2550 Intro to
 cybersecurity L9: Crypto PRG

abhi shelat

One-time pad

PROBLEMS:

Key is As long as the message. Required for perfect security.

$$
\begin{aligned}
\mathcal{M} & =\{0,1\}^{n} \\
\mathcal{K} & =\{0,1\}^{n} \\
\text { Gen } & =k=k_{1} k_{2} \ldots k_{n} \leftarrow\{0,1\}^{n} \\
E n c_{k}\left(m_{1} m_{2} \ldots m_{n}\right) & =c_{1} c_{2} \ldots c_{n} \text { where } c_{i}=m_{i} \oplus k_{i} \\
\operatorname{Dec} c_{k}\left(c_{1} c_{2} \ldots c_{n}\right) & =m_{1} m_{2} \ldots m_{n} \text { where } m_{i}=c_{i} \oplus k_{i}
\end{aligned}
$$

Goal: Symmetric encryption with a "short" key that works for 1 arbitrarily long message

Tradeoff: Must settle for weaker security (not perfect)

Goal: One key to a long key

1010 * n-bits

Perfect secrecy

(Gen, Enc, Dec, \mathcal{M}, \mathcal{K}) is said to be PERFECTLY SECRET if
$\forall m_{1}, m_{2} \in \mathcal{M}, \forall c$
$\operatorname{Pr}\left[k \leftarrow \operatorname{Gen}: \operatorname{Enc}_{k}\left(m_{1}\right)=c\right]$
$\operatorname{Pr}\left[k \leftarrow \operatorname{Gen}: \operatorname{Enc}_{k}\left(m_{2}\right)=c\right]$

Perfect secrecy

(Gen, Enc, Dec, \mathcal{M}, \mathcal{K}) is said to be PERFECTLY SECRET if
$\forall m_{1}, m_{2} \in \mathcal{M}, \forall c$
$\operatorname{Pr}\left[k \leftarrow \operatorname{Gen}: \operatorname{Enc}_{k}\left(m_{1}\right)=c\right]$

Indistinguishable secrecy

$\operatorname{Pr}\left[k \leftarrow \operatorname{Gen}: \operatorname{Enc}_{k}\left(m_{1}\right)=c\right]$

$\operatorname{Pr}\left[k \leftarrow \operatorname{Gen}: \operatorname{Enc}_{k}\left(m_{2}\right)=c\right]$
"So close that no efficient computer can distinguish"

$$
1010 * n \text {-bits }
$$

This is the idea behind a stream cipher.

An encryption scheme

$$
\operatorname{Gen}\left(1^{n}\right) \quad k \leftarrow U_{n / 2}
$$

(key generation)
$E n c_{k}(m) \quad r \leftarrow G(k) \quad|r|=|m| \quad$ (encryption)
output $\quad m \oplus r$

Stream cipher

Gen: pick an n -bit binary string k
Enc(k,m): Output G(k) $+m$
$\operatorname{Dec}(k, c):$ Output $G(k)+c$

n-bits

$$
1010 * \text { n-bits }
$$

what security properties are needed for this to work?

$$
\begin{aligned}
\mathcal{M} & =\{0,1\}^{n} \\
\mathcal{K} & =\{0,1\}^{n} \\
\text { Gen } & =k=k_{1} k_{2} \ldots k_{n} \leftarrow\{0,1\}^{n} \\
E n c_{k}\left(m_{1} m_{2} \ldots m_{n}\right) & =c_{1} c_{2} \ldots c_{n} \text { where } c_{i}=m_{i} \oplus k_{i} \\
\operatorname{Dec}_{k}\left(c_{1} c_{2} \ldots c_{n}\right) & =m_{1} m_{2} \ldots m_{n} \text { where } m_{i}=c_{i} \oplus k_{i}
\end{aligned}
$$

One time pad needed keys from uniform distribution on strings of len n

n-bits

$$
1010 * n \text {-bits }
$$

what security properties are needed for this to work?
"Same \# of Os as 1s?"

Vigenere cipher

ABCDEFGHIJKLMNOPQRSTUVWXYZ 01234567890123456789012345
msG：THEMODERNSTUDYOF
key：ABHIABHIABHIABHIABHIABHI
ciphertext：T I L U O L Z N T A C D Z V 。 。 。

Other examples

Enigma

n-bits

should "appear" to be the same as a random string $\{0,1\}^{10^{10} n}$

$$
U_{10^{10} n}
$$

what does it mean for a process G that produces keys to be pseudo-random?
"Computational Indistinguishability" provides a precise way of formulating pseudo-randomness

Truly random

Pseudo-randomness

next slide has 2 pics

are they the same or different?

same or different?

twice the time.

same or different?

lesson:

Ability to answer correctly...

NEW PROBLEM:

consider all drawings consisting of boxes.

evens

odds
\# of boxes that overlap
\# of ... is odd another box is even

GAME:

I will pick a sample from either evens
or odds, and you will have to guess
which one.

READY?

This game is parameterized by its size: i.e, \# of boxes.

This game is parameterized by its size: i.e, \# of boxes.

As the game size increases, it becomes intractable (for a human) to
distinguish b/w evens and odd

Two ensembles are computationally indistinguishable if it becomes progressively harder for any computer to distinguish the two.

Two ensembles are comp. indistinguishable

$$
\left\{X_{n}\right\}_{n \in N} \approx\left\{Y_{n}\right\}_{n \in N}
$$

Two ensembles are comp. indistinguishable

$\left\{X_{n}\right\}_{n \in N} \approx\left\{Y_{n}\right\}_{n \in N}$
if for all non-uniform p.p.t. alg D, there exists a negligible function $\epsilon(n)$ such that for all n

Two ensembles are comp. indistinguishable

$$
\left\{X_{n}\right\}_{n \in N} \approx\left\{Y_{n}\right\}_{n \in N}
$$

if for all non-uniform p.p.t. alg D, there exists a negligible function $\quad \epsilon(n)$ such that for all n

$$
\left|\operatorname{Pr}\left[t \leftarrow X_{n}, D(t)=1\right]-\operatorname{Pr}\left[t \leftarrow Y_{n}, D(t)=1\right]\right| \leq \epsilon(n) .
$$

Polynomial vs. Exponential

- Consider the functions $f(n)=2 n^{3}+1$ and $g(n)=2^{n}$
- Which function is "bigger"?
plot $2^{\wedge} n, 2 n^{\wedge} 3+1$ from 1 to 25

11	2663	2048
12	3457	4096
13	4395	8192
14	5489	16384
20	54001	$1,073,741,824$
30	85751	$34,359,738,368$
35		$1,048,576$

Polynomial vs. Exponential

Polynomial vs. Exponential

- A function is negligible if it approaches ofaster than any inverse polynomial

Polynomial vs. Exponential

- A function is negligible if it approaches ofaster than any inverse polynomial
- Definition: A function $f: \mathbb{N} \rightarrow \mathbb{R}$ is a negligible function if for any positive polynomial $p(\cdot)$ there exists N such that for all $n>N$ it holds that $f(n)<\frac{1}{p(n)}$

Polynomial vs. Exponential

- A function is negligible if it approaches o faster than any inverse polynomial
- Definition: A function $f: \mathbb{N} \rightarrow \mathbb{R}$ is a negligible function if for any positive polynomial $p(\cdot)$ there exists N such that for all $n>N$ it holds that $f(n)<\frac{1}{p(n)}$
- For example: $2^{-n}, 2^{-\sqrt{n}}$ and $2^{-\log ^{2}(n)}$ are negligible functions

Polynomial vs. Exponential

- A function is negligible if it approaches ofaster than any inverse polynomial
- Definition: A function $f: \mathbb{N} \rightarrow \mathbb{R}$ is a negligible function if for any positive polynomial $p(\cdot)$ there exists N such that for all $n>N$ it holds that $f(n)<\frac{1}{p(n)}$
- For example: $2^{-n}, 2^{-\sqrt{n}}$ and $2^{-\log ^{2}(n)}$ are negligible functions
- $1 / 2,1 / \log ^{2}(n)$ and $1 / n^{5}$ are non-negligible functions
pseudo-random

An algorithm $\{G\}$ is said to be pseudo-random

pseudo-random

$$
\left\{k \leftarrow\{0,1\}^{n}: G(k)\right\}_{n} \quad \approx \quad\left\{U_{\ell}\right\}_{\ell(n)}
$$

"Truly uniform strings of the same length as the output of the PRG"

An algorithm $\{G\}$ is said to be

pseudo-random

if

$$
\left\{k \leftarrow\{0,1\}^{n}: G(k)\right\}_{n}
$$

\approx

$$
\left\{U_{\theta}\right\}_{\ell(n)}
$$

"Truly uniform strings of the same length as the output of the PRG"

Original goal

Pseudo-random generator

A family of functions $\quad G:\{0,1\}^{n} \rightarrow\{0,1\}^{m}$
is a pseudo-random generator if

Pseudo-random generator

A family of functions $\quad G:\{0,1\}^{n} \rightarrow\{0,1\}^{m}$
is a pseudo-random generator if
G can be computed in p.p.t.
$|G(x)|>\ell(|x|)$ for some $\quad \ell(y)>y$
$\left\{x \leftarrow U_{n}: G(x)\right\}_{n \in \mathbb{N}}$ is pseudo-random

Truly random

Pseudo-randomness

The same notion of indistinguishability helps us define security for symmetric encryption.

Perfect secrecy

(Gen, Enc, Dec, \mathcal{M}, \mathcal{K}) is said to be PERFECTLY SECRET if
$\forall m_{1}, m_{2} \in \mathcal{M}, \forall c$
$\operatorname{Pr}\left[k \leftarrow \operatorname{Gen}: \operatorname{Enc}_{k}\left(m_{1}\right)=c\right]$
$\operatorname{Pr}\left[k \leftarrow \operatorname{Gen}: \operatorname{Enc}_{k}\left(m_{2}\right)=c\right]$

Perfect secrecy

(Gen, Enc, Dec, \mathcal{M}, \mathcal{K}) is said to be PERFECTLY SECRET if
$\forall m_{1}, m_{2} \in \mathcal{M}, \forall c$
$\operatorname{Pr}\left[k \leftarrow \operatorname{Gen}: \operatorname{Enc}_{k}\left(m_{1}\right)=c\right]$

Indistinguishable secrecy

$\operatorname{Pr}\left[k \leftarrow \operatorname{Gen}: \operatorname{Enc}_{k}\left(m_{1}\right)=c\right]$

$\operatorname{Pr}\left[k \leftarrow \operatorname{Gen}: \operatorname{Enc}_{k}\left(m_{2}\right)=c\right]$
"So close that no efficient computer can distinguish"

computational secrecy

(Gen, Enc, Dec, \mathcal{M}, \mathcal{K})

is said to be computationally secure if

$$
\begin{gathered}
\forall m_{1}, m_{2} \in \mathcal{M} \text { s.t. }\left|m_{1}\right|=\left|m_{2}\right|, \forall c \\
\left\{k \leftarrow \operatorname{Gen}\left(1^{n}\right): \operatorname{Enc}_{k}\left(m_{1}\right)\right\} \\
\sim \\
\left\{k \leftarrow \operatorname{Gen}\left(1^{n}\right): E n c_{k}\left(m_{2}\right)\right\}
\end{gathered}
$$

Simple security game for Enc

Given a secure PRG, then (Gen, Enc, Dec) described earlier is secure in this game.

How can we build pseudo-random generators and symmetric encryption?

Two ways to build PRGS + Symmetric Enc

Principled
Heuristic

Modern version: AES

AES(k,m)

■■■■ ■■■日暗 ■■■■

AES(k,m)

■■■■
 ■■■ ■日ா ■■■■

AES(k,m)

■■■■ ■■■日暗 ■■■■

AES(k,m)

Add round key 1 into m

For $\mathrm{i}=1 . . .9$:
SubBytes: apply a map to all bytes
ShiftRows: permute the bytes MixColumns: permute columns AddRoundKey i+1

SubBytes: apply a map to all bytes ShiftRows: permute the bytes AddRoundKey i+1

Main security comes from s-box

AES S-Box

	00	01	02	03	04	05	06	07	08	09	0a	Ob	Oc	Od	Oe	Of
00	63	7c	77	7b	f2	6b	$6 f$	c5	30	01	67	2b	fe	d7	ab	76
10	ca	82	c9	7d	fa	59	47	f0	ad	d4	a2	af	9c	a4	72	c0
20	b7	fd	93	26	36	$3 f$	f7	CC	34	a5	e5	f1	71	d8	31	15
30	04	c7	23	c3	18	96	05	9a	07	12	80	e2	eb	27	b2	75
40	09	83	2c	1a	1b	6 e	5a	a0	52	3b	d6	b3	29	e3	$2 f$	84
50	53	d1	00	ed	20	fc	b1	5b	6a	cb	be	39	4a	4c	58	cf
60	d0	ef	aa	fb	43	4d	33	85	45	f9	02	7f	50	3c	$9 f$	a8
70	51	a3	40	$8 f$	92	9d	38	f5	bc	b6	da	21	10	ff	f3	d2
80	cd	Oc	13	ec	$5 f$	97	44	17	c4	a7	7e	3d	64	5d	19	73
90	60	81	$4 f$	dc	22	2a	90	88	46	ee	b8	14	de	5 e	Ob	db
a0	e0	32	3a	0a	49	06	24	5c	c2	d3	ac	62	91	95	e4	79
b0	e7	c8	37	6d	8d	d5	4e	a9	6c	56	f4	ea	65	7a	ae	08
c0	ba	78	25	2 e	1c	a6	b4	c6	e8	dd	74	$1 f$	4b	bd	8b	8a
d0	70	3 e	b5	66	48	03	f6	0 e	61	35	57	b9	86	c1	1d	9e
e0	e1	f8	98	11	69	d9	8 e	94	9b	1e	87	e9	ce	55	28	df
f0	8c	a1	89	Od	bf	e6	42	68	41	99	2d	Of	b0	54	bb	16

The column is determined by the least significant nibble, and the row by the most significant nibble. For example, the value 0 x 9 a is converted into 0 xb 8 .

AES is very fast.

Cipher Performance per CPU core

	AES Performance per CPU core for TLS v1.2 Ciphers (Higher is Better, Speeds in Megabytes per Second)					
	ChaCha20	AES-128-GCM	AES-256-GCM	AES-128-CBC	AES-256-CBC	Total Score
AMD Ryzen 7 1800X	573	3006	2642	1513	1101	$=8835$
Intel W-2125	565	2808	2426	1698	1235	$=8732$
Intel i7-6700	585	2607	2251	1561	1131	$=8135$
AMD EPYC 7551	355	2213	1962	1114	811	$=6455$
Intel i5-6500	410	1729	1520	1078	783	$=5520$
Intel i7-4750HQ	369	1556	1353	688	499	$=4465$
AMD FX 8350	367	1453	1278	716	514	$=4328$
AMD FX 8150	347	1441	1273	716	515	$=4292$
Intel E5-2650 v4	404	1479	1286	652	468	$=4289$
Intel i7-2700K	382	1353	1212	763	552	$=4262$
Intel i7-3840QM	373	1279	1143	725	520	$=4040$
Intel i5-2500K	358	1274	1140	728	522	$=4022$
AMD FX 6100	326	1344	1186	671	481	$=4008$
AMD A10-7850K	321	1303	1176	685	499	$=3984$
AMD A8-7600 Kaveri	306	1246	1108	648	470	$=3778$
Intel E5-2640 v3	303	1286	1126	585	419	$=3719$
AMD Opteron 6380	293	1203	1063	589	423	$=3571$
AMD Opteron 6378	282	1138	986	561	406	$=3373$
AMD Opteron 6274	232	1054	926	524	376	$=3112$
Intel Xeon E5-2630	247	962	864	541	394	$=3008$
Intel Xeon E5645	262	817	717	727	524	$=3047$

Efficiency: chacha20 (a stream cipher)

Efficiency: chacha20 (a stream cipher)
Columns

Efficiency: chacha20 (a stream cipher) Diagonals

```
void chacha_block(uint32_t out[16], uint32_t const in[16])
{
    int i;
    uint32_t x[16];
    for (i = 0; i < 16; +i)
        x[i] = in[i];
    // 10 loops x 2 rounds/loop = 20 rounds
    for (i = 0; i < ROUNDS; i += 2) {
        // Odd round
        QR(x[0], x[4], x[ 8], x[12]); // column 0
        QR(x[1], x[5], x[ 9], x[13]); // column 1
        QR(x[2], x[6], x[10], x[14]); // column 2
        QR(x[3], x[7], x[11], x[15]); // column 3
        // Even round
        QR(x[0], x[5], x[10], x[15]); // diagonal 1 (main diagonal)
        QR(x[1], x[6], x[11], x[12]); // diagonal 2
        QR(x[2], x[7], x[ 8], x[13]); // diagonal 3
        QR(x[3], x[4], x[ 9], x[14]); // diagonal 4
    }
    for (i = 0; i < 16; +i)
    out[i] = x[i] + in[i];
}
```


Is this game strong enough to capture all feasible attacks?

IND-CPA attack for Symmetric Enc

IND-CPA attack for Symmetric Enc

IND-CPA attack for Symmetric Enc

IND-CPA attack for Symmetric Enc

IND-CPA attack for Symmetric Enc

IND-CPA attack for Symmetric Enc

IND-CPA attack for Symmetric Enc

IND-CPA attack for Symmetric Enc

Our construction can satisfy this notion if both Alice and Bob maintain a counter of how much random tape they have used.

$E n c_{k}(m)$	$r \leftarrow G(k)$	$\|r\|=n$
(encryption)		
$\operatorname{Dec} c_{k}(c)$	output $\quad m \oplus r$	(decryption)

c

Theorem: If One-way functions exist, Then IND-CPA secure symmetric encryption exists.

Goal: Symmetric encryption with a "short" key that works for 1 arbitrarily long message

What about many messages?

Handling many messages the wrong way

Electronic CodeBook (ECB) mode:

$$
\operatorname{Enc}_{k}\left(m_{1} \cdots m_{\ell}\right)=\left(F_{k}\left(m_{1}\right), F_{k}\left(m_{2}\right), \ldots, F_{k}\left(m_{\ell}\right)\right)
$$

Modes of Operation: AES-CTR

Modes of Operation: AES-CTR

$\operatorname{Enc}_{k}\left(m_{1} \cdots m_{\ell} ; r\right)$
$=\left(r, F_{k}(r+1) \oplus m_{1}, F_{k}(r+2) \oplus m_{2}, \ldots, F_{k}(r+\ell) \oplus m_{\ell}\right)$

Modes of Operation: AES-CTR

$\operatorname{Enc}_{k}\left(m_{1} \cdots m_{\ell} ; r\right)$
$=\left(r, F_{k}(r+1) \oplus m_{1}, F_{k}(r+2) \oplus m_{2}, \ldots, F_{k}(r+\ell) \oplus m_{\ell}\right)$

Modes of Operation: AES-CTR

$$
\begin{aligned}
& \operatorname{Enc}_{k}\left(m_{1} \cdots m_{\ell} ; r\right) \\
& =\left(r, F_{k}(r+1) \oplus m_{1}, F_{k}(r+2) \oplus m_{2}, \ldots, F_{k}(r+\ell) \oplus m_{\ell}\right)
\end{aligned}
$$

AES-CTR is also IND-CPA secure when nonce r is chosen uniquely for each encryption.

