
2550 Intro to
cybersecurity

abhi shelat

L9: Crypto PRG

One-time pad

12 CHAPTER 1. INTRODUCTION

By the definition of conditional probability,

Prk,m [m = m1 | Enck(m) = c] =
Prk,m [m = m1 ⇤ Enck(m) = c]

Prk,m [Enck(m) = c]

=
Prm [m = m1]Prk [Enck(m1) = c]

Prk,m [Enck(m) = c]

=
1
2 · Prk [Enck(m1) = c]
Prk,m [Enck(m) = c]

Analogously,

Prk,m [m = m2 | Enck(m) = c] =
1
2 · Prk [Enck(m2) = c]
Prk,m [Enck(m) = c]

.

Cancelling and rearranging terms, we conclude that

Prk [Enck(m1) = c] = Prk [Enck(m2) = c] .

The One-Time Pad

Given our definition of security, we turn to the question of whether per-
fectly secure encryption schemes exists. It turns out that both the encryption
schemes we have seen so far (i.e., the Caesar and Substitution ciphers) are se-
cure as long as we only consider messages of length 1. However, when con-
sidering messages of length 2 (or more) the schemes are no longer secure—in
fact, it is easy to see that encryptions of the strings AA and AB have disjoint
distributions, thus violating perfect secrecy (prove this!).

Nevertheless, this suggests that we might obtain perfect secrecy by some-
how adapting these schemes to operate on each element of a message inde-
pendently. This is the intuition behind the one-time pad encryption scheme,
invented by Gilbert Vernam and Joseph Mauborgne in 1919.

Definition 12.1. The One-Time Pad encryption scheme is described by the
following tuple (M,K,Gen,Enc,Dec).

M = {0, 1}n

K = {0, 1}n

Gen = k = k1k2. . .kn ⇥ {0, 1}n

Enck(m1m2. . .mn) = c1c2. . .cn where ci = mi � ki

Deck(c1c2. . .cn) = m1m2. . .mn where mi = ci � ki

The � operator represents the binary xor operation.

PROBLEMS:

KEY IS AS LONG AS THE MESSAGE.

REQUIRED FOR PERFECT SECURITY.

Goal: Symmetric encryption with a
“short” key that works for 1
arbitrarily long message

Tradeof: Must settle for weaker
security (not perfect)

Goal: One key to a long key

n-bits

1010 * n-bits

G

Perfect secrecy

is said to be PERFECTLY SECRET if

Perfect secrecy

is said to be PERFECTLY SECRET if

∼

Indistinguishable
secrecy

“So close that no efficient
computer can distinguish”

This is the idea behind a stream cipher.

n-bits

1010 * n-bits

An encryption scheme
Gen(1n) (key generation)

Enck(m) (encryption)
output

k

c

m

rG

|m|

Stream cipher
Gen: pick an n-bit binary string k

Enc(k,m): Output G(k) + m

Dec(k,c): Output G(k) + c

what security properties are needed for this to work?

n-bits

1010 * n-bits

One time pad needed keys
from uniform distribution on
strings of len n

Un

12 CHAPTER 1. INTRODUCTION

By the definition of conditional probability,

Prk,m [m = m1 | Enck(m) = c] =
Prk,m [m = m1 ⇤ Enck(m) = c]

Prk,m [Enck(m) = c]

=
Prm [m = m1]Prk [Enck(m1) = c]

Prk,m [Enck(m) = c]

=
1
2 · Prk [Enck(m1) = c]
Prk,m [Enck(m) = c]

Analogously,

Prk,m [m = m2 | Enck(m) = c] =
1
2 · Prk [Enck(m2) = c]
Prk,m [Enck(m) = c]

.

Cancelling and rearranging terms, we conclude that

Prk [Enck(m1) = c] = Prk [Enck(m2) = c] .

The One-Time Pad

Given our definition of security, we turn to the question of whether per-
fectly secure encryption schemes exists. It turns out that both the encryption
schemes we have seen so far (i.e., the Caesar and Substitution ciphers) are se-
cure as long as we only consider messages of length 1. However, when con-
sidering messages of length 2 (or more) the schemes are no longer secure—in
fact, it is easy to see that encryptions of the strings AA and AB have disjoint
distributions, thus violating perfect secrecy (prove this!).

Nevertheless, this suggests that we might obtain perfect secrecy by some-
how adapting these schemes to operate on each element of a message inde-
pendently. This is the intuition behind the one-time pad encryption scheme,
invented by Gilbert Vernam and Joseph Mauborgne in 1919.

Definition 12.1. The One-Time Pad encryption scheme is described by the
following tuple (M,K,Gen,Enc,Dec).

M = {0, 1}n

K = {0, 1}n

Gen = k = k1k2. . .kn ⇥ {0, 1}n

Enck(m1m2. . .mn) = c1c2. . .cn where ci = mi � ki

Deck(c1c2. . .cn) = m1m2. . .mn where mi = ci � ki

The � operator represents the binary xor operation.

what security properties are needed for this to work?

n-bits

1010 * n-bits

“Same # of 0s as 1s?”

Vigenere cipher

T H E M O D E R N S T U D Y O F . . .MSG:

KEY: A B H I A B H I A B H I A B H I A B H I A B H I

ciphertext: T I L U O E L Z N T A C D Z V N . . .

ABCDEFGHIJKLMNOPQRSTUVWXYZ

01234567890123456789012345

Other examples

Enigma

1010 * n-bits

{0, 1}10
10n

U1010n

should “appear” to be the same as a random string

n-bits

G

what does it mean�
for a process G that

produces keys to be�
pseudo-random?

“Computational Indistinguishability”�
provides a precise�
way of formulating�
pseudo-randomness

Pseudo-randomness

Un

Truly random

1010 * n-bits
G

next slide has 2 pics

are they the same
or different?

same or different?

twice the time.

same or different?

lesson:
Ability to answer correctly...

http://i.telegraph.co.uk/telegraph/multimedia/archive/01553/toss_1553792c.jpg

http://i.telegraph.co.uk/telegraph/multimedia/archive/01553/toss_1553792c.jpg

NEW PROBLEM:
consider all drawings consisting of boxes.

evens odds

of boxes that overlap

another box is even

of ... is odd

GAME:

I will pick a sample from either evens

or odds, and you will have to guess

which one.

READY?

This game is parameterized by its size: i.e, # of boxes.

This game is parameterized by its size: i.e, # of boxes.

evensn oddsn

As the game size increases, it becomes
intractable (for a human) to�
distinguish b/w �
evens and odd

Two ensembles are computationally
indistinguishable if it becomes
progressively harder for any computer
to distinguish the two.

Two ensembles are comp. indistinguishable

48CHAPTER 3. INDISTINGUISHABILITY AND PSEUDO-RANDOMNESS

• Given any prefix, it is hard to guess the next sequence.

All of the above answers are examples of specific statistical tests—and
many many more such test exist in the litterature. For specific simulations, it
may be enough to use strings that pass some specific statistical tests. How-
ever, for cryptography, we require the use of string that passes all (efficient)
statistical tests.

3.1 Computational Indistinguihability

Towards this goal we introduce the notion of computational indistinguishabil-
ity—formalizing what it means for two probability distributions to “look”
the same in the eyes of a computationally bounded adversary. This notion is
one of the corner stones of modern cryptography. As our treatment is asymp-
totic, the actual formalization of this notion considers sequences—called en-
sembles—of probability distributions (or growing output lenght).

Definition 48.1 (Ensembles of Probability Distributions). ...add

Definition 48.1. (Computational Indistinguishability). Let {Xn}n�N ,{Yn}n�N

be ensembles of probability distributions where Xn, Yn are probability distri-
butions over {0, 1}l(n) for some polynomial l(·). We say that {Xn}n�N and
{Yn}n�N are computationally indistinguishable (abbr. {Xn}n�N ⇤ {Yn}n�N) if
for all non-uniform PPT D (called the “distinguisher”), there exists a negligi-
ble function �(n) s.t ⌃n ⇧ N

|Pr [t ⌅ Xn, D(t) = 1]� Pr [t ⌅ Yn, D(t) = 1] | ⇥ �(n).

In other words, two (ensembles of) probability distributions are computa-
tionally indisinguishable if no efficient distinguisher D can tell them apart
better than with a negligible advantage. [Rafael’s Note: HW, show that this
means i cannot guess better than 1/2 which one it was]

To simplify notation, we say that D distinguishes the distributions Xn and
Yn with probability �

|Pr [t ⌅ Xn, D(t) = 1]� Pr [t ⌅ Yn, D(t) = 1] | > �.

Additionally, we say D distinguishes the probability ensembles {Xn}n�N and
{Yn}n�N with probability µ(·) if ⌃n ⇧ N , D distinguishes Xn and Yn with
probability µ(n).

Two ensembles are comp. indistinguishable

48CHAPTER 3. INDISTINGUISHABILITY AND PSEUDO-RANDOMNESS

• Given any prefix, it is hard to guess the next sequence.

All of the above answers are examples of specific statistical tests—and
many many more such test exist in the litterature. For specific simulations, it
may be enough to use strings that pass some specific statistical tests. How-
ever, for cryptography, we require the use of string that passes all (efficient)
statistical tests.

3.1 Computational Indistinguihability

Towards this goal we introduce the notion of computational indistinguishabil-
ity—formalizing what it means for two probability distributions to “look”
the same in the eyes of a computationally bounded adversary. This notion is
one of the corner stones of modern cryptography. As our treatment is asymp-
totic, the actual formalization of this notion considers sequences—called en-
sembles—of probability distributions (or growing output lenght).

Definition 48.1 (Ensembles of Probability Distributions). ...add

Definition 48.1. (Computational Indistinguishability). Let {Xn}n�N ,{Yn}n�N

be ensembles of probability distributions where Xn, Yn are probability distri-
butions over {0, 1}l(n) for some polynomial l(·). We say that {Xn}n�N and
{Yn}n�N are computationally indistinguishable (abbr. {Xn}n�N ⇤ {Yn}n�N) if
for all non-uniform PPT D (called the “distinguisher”), there exists a negligi-
ble function �(n) s.t ⌃n ⇧ N

|Pr [t ⌅ Xn, D(t) = 1]� Pr [t ⌅ Yn, D(t) = 1] | ⇥ �(n).

In other words, two (ensembles of) probability distributions are computa-
tionally indisinguishable if no efficient distinguisher D can tell them apart
better than with a negligible advantage. [Rafael’s Note: HW, show that this
means i cannot guess better than 1/2 which one it was]

To simplify notation, we say that D distinguishes the distributions Xn and
Yn with probability �

|Pr [t ⌅ Xn, D(t) = 1]� Pr [t ⌅ Yn, D(t) = 1] | > �.

Additionally, we say D distinguishes the probability ensembles {Xn}n�N and
{Yn}n�N with probability µ(·) if ⌃n ⇧ N , D distinguishes Xn and Yn with
probability µ(n).

if for all non-uniform p.p.t. alg D,

there exists a negligible function

such that for all n

Two ensembles are comp. indistinguishable

48CHAPTER 3. INDISTINGUISHABILITY AND PSEUDO-RANDOMNESS

• Given any prefix, it is hard to guess the next sequence.

All of the above answers are examples of specific statistical tests—and
many many more such test exist in the litterature. For specific simulations, it
may be enough to use strings that pass some specific statistical tests. How-
ever, for cryptography, we require the use of string that passes all (efficient)
statistical tests.

3.1 Computational Indistinguihability

Towards this goal we introduce the notion of computational indistinguishabil-
ity—formalizing what it means for two probability distributions to “look”
the same in the eyes of a computationally bounded adversary. This notion is
one of the corner stones of modern cryptography. As our treatment is asymp-
totic, the actual formalization of this notion considers sequences—called en-
sembles—of probability distributions (or growing output lenght).

Definition 48.1 (Ensembles of Probability Distributions). ...add

Definition 48.1. (Computational Indistinguishability). Let {Xn}n�N ,{Yn}n�N

be ensembles of probability distributions where Xn, Yn are probability distri-
butions over {0, 1}l(n) for some polynomial l(·). We say that {Xn}n�N and
{Yn}n�N are computationally indistinguishable (abbr. {Xn}n�N ⇤ {Yn}n�N) if
for all non-uniform PPT D (called the “distinguisher”), there exists a negligi-
ble function �(n) s.t ⌃n ⇧ N

|Pr [t ⌅ Xn, D(t) = 1]� Pr [t ⌅ Yn, D(t) = 1] | ⇥ �(n).

In other words, two (ensembles of) probability distributions are computa-
tionally indisinguishable if no efficient distinguisher D can tell them apart
better than with a negligible advantage. [Rafael’s Note: HW, show that this
means i cannot guess better than 1/2 which one it was]

To simplify notation, we say that D distinguishes the distributions Xn and
Yn with probability �

|Pr [t ⌅ Xn, D(t) = 1]� Pr [t ⌅ Yn, D(t) = 1] | > �.

Additionally, we say D distinguishes the probability ensembles {Xn}n�N and
{Yn}n�N with probability µ(·) if ⌃n ⇧ N , D distinguishes Xn and Yn with
probability µ(n).

48CHAPTER 3. INDISTINGUISHABILITY AND PSEUDO-RANDOMNESS

• Given any prefix, it is hard to guess the next sequence.

All of the above answers are examples of specific statistical tests—and
many many more such test exist in the litterature. For specific simulations, it
may be enough to use strings that pass some specific statistical tests. How-
ever, for cryptography, we require the use of string that passes all (efficient)
statistical tests.

3.1 Computational Indistinguihability

Towards this goal we introduce the notion of computational indistinguishabil-
ity—formalizing what it means for two probability distributions to “look”
the same in the eyes of a computationally bounded adversary. This notion is
one of the corner stones of modern cryptography. As our treatment is asymp-
totic, the actual formalization of this notion considers sequences—called en-
sembles—of probability distributions (or growing output lenght).

Definition 48.1 (Ensembles of Probability Distributions). ...add

Definition 48.1. (Computational Indistinguishability). Let {Xn}n�N ,{Yn}n�N

be ensembles of probability distributions where Xn, Yn are probability distri-
butions over {0, 1}l(n) for some polynomial l(·). We say that {Xn}n�N and
{Yn}n�N are computationally indistinguishable (abbr. {Xn}n�N ⇤ {Yn}n�N) if
for all non-uniform PPT D (called the “distinguisher”), there exists a negligi-
ble function �(n) s.t ⌃n ⇧ N

|Pr [t ⌅ Xn, D(t) = 1]� Pr [t ⌅ Yn, D(t) = 1] | ⇥ �(n).

In other words, two (ensembles of) probability distributions are computa-
tionally indisinguishable if no efficient distinguisher D can tell them apart
better than with a negligible advantage. [Rafael’s Note: HW, show that this
means i cannot guess better than 1/2 which one it was]

To simplify notation, we say that D distinguishes the distributions Xn and
Yn with probability �

|Pr [t ⌅ Xn, D(t) = 1]� Pr [t ⌅ Yn, D(t) = 1] | > �.

Additionally, we say D distinguishes the probability ensembles {Xn}n�N and
{Yn}n�N with probability µ(·) if ⌃n ⇧ N , D distinguishes Xn and Yn with
probability µ(n).

if for all non-uniform p.p.t. alg D,

there exists a negligible function

such that for all n

Polynomial vs. Exponential
• Consider the functions and

• Which function is “bigger”? 

𝑓(𝑛) = 2𝑛3 + 1 𝑔(𝑛) = 2𝑛

11 2663 2048

12 3457 4096

13 4395 8192

14 5489 16384

20 16001 1,048,576

30 54001 1,073,741,824

35 85751 34,359,738,368

Polynomial vs. Exponential

Polynomial vs. Exponential
• A function is negligible if it approaches faster than any inverse polynomial0

Polynomial vs. Exponential
• A function is negligible if it approaches faster than any inverse polynomial0

• Definition: A function is a negligible function if for any positive
polynomial there exists such that for all it holds that  

𝑓:ℕ → ℝ
𝑝(⋅) 𝑁 𝑛 > 𝑁

𝑓(𝑛) <
1

𝑝(𝑛)

Polynomial vs. Exponential
• A function is negligible if it approaches faster than any inverse polynomial0

• Definition: A function is a negligible function if for any positive
polynomial there exists such that for all it holds that  

𝑓:ℕ → ℝ
𝑝(⋅) 𝑁 𝑛 > 𝑁

𝑓(𝑛) <
1

𝑝(𝑛)

• For example: , and are negligible functions2−𝑛 2− 𝑛 2−log2(𝑛)

Polynomial vs. Exponential
• A function is negligible if it approaches faster than any inverse polynomial0

• Definition: A function is a negligible function if for any positive
polynomial there exists such that for all it holds that  

𝑓:ℕ → ℝ
𝑝(⋅) 𝑁 𝑛 > 𝑁

𝑓(𝑛) <
1

𝑝(𝑛)

• For example: , and are negligible functions2−𝑛 2− 𝑛 2−log2(𝑛)

• , and are non-negligible functions1/2 1/log2(𝑛) 1/𝑛5

pseudo-random

pseudo-random
An algorithm {G} is said to be

pseudo-random
if

{k ← {0,1}n : G(k)}n {Uℓ}ℓ(n)≈
“The output of the PRG, when

evaluated on seeds of
increasing length”

“Truly uniform strings of the
same length as the output of

the PRG”

pseudo-random
An algorithm {G} is said to be

if

{k ← {0,1}n : G(k)}n {Uℓ}ℓ(n)≈
“The output of the PRG, when

evaluated on seeds of
increasing length”

“Truly uniform strings of the
same length as the output of

the PRG”

Original goal

n-bits

1010 * n-bits

Pseudo-random generator

is a pseudo-random generator if

A family of functions G : {0,1}n → {0,1}m

Pseudo-random generator
A family of functions

is a pseudo-random generator if

G can be computed in p.p.t.

for some

is pseudo-random

G : {0,1}n → {0,1}m

Pseudo-randomness

Un

Truly random

1010 * n-bits
G

The same notion of
indistinguishability helps us define
security for symmetric encryption.

Perfect secrecy

is said to be PERFECTLY SECRET if

Perfect secrecy

is said to be PERFECTLY SECRET if

∼

Indistinguishable
secrecy

“So close that no efficient
computer can distinguish”

computational secrecy

is said to be computationally secure if

Simple security game for Enc

Alice Bob

Eve

Simple security game for Enc

Alice Bob

Genk k

Eve

Simple security game for Enc

Alice Bob

Genk k

Evem1, m2 ∈ M

Simple security game for Enc

Alice Bob

Genk k

Evem1, m2 ∈ M

b ← {0,1}
c ← Enck(mb)

Simple security game for Enc

Alice Bob

Genk k

c

Evem1, m2 ∈ M

b ← {0,1}
c ← Enck(mb)

Simple security game for Enc

Alice Bob

Genk k

c

Evem1, m2 ∈ M

b ← {0,1}
c ← Enck(mb)

Guesses b.

Wins if it is correct.

Simple security game for Enc

Alice Bob

Genk k

c

Evem1, m2 ∈ M

b ← {0,1}
c ← Enck(mb)

Guesses b.

Wins if it is correct.

1

2

3

4

5

Given a secure PRG,

then (Gen, Enc, Dec) described earlier is secure in this game.

How can we build �
pseudo-random�
generators and

symmetric encryption?

Two ways to build PRGS + Symmetric Enc

Principled Heuristic

Modern version: AES

AES(k,m)

AES(k,m)

AES(k,m)

AES(k,m)

Add round key 1 into m
For i=1…9:

SubBytes: apply a map to all bytes

ShiftRows: permute the bytes

MixColumns: permute columns

AddRoundKey i+1

SubBytes: apply a map to all bytes

ShiftRows: permute the bytes

AddRoundKey i+1

Main security comes from s-box

AES is very fast. https://calomel.org/aesni_ssl_performance.html

Efficiency: chacha20 (a stream cipher)

S`Qi2+iBM; �_s *BT?2`b

I �_s +BT?2`b U2X;X h?`22}b?- aT2+F- *?�*?�kyV
`2Hv QM KQ/mH�` �//BiBQM- _Qi�iBQM �M/ sP_

I 1�bBHv T`Qi2+i2/ �;�BMbi iBKBM; bB/2@+?�MM2Hb- #mi
�HH i?2 ?�`/2` iQ T`Qi2+i �;�BMbi TQr2`f1J
bB/2@+?�MM2Hb- b22 2X;X

I ǳ"mii2`~v �ii�+FǴ �;�BMbi KQ/mH�` �//BiBQM BM
aF2BM

I ǳ"`B+FH�v2` �ii�+FǴ QM *?�*?�ky

I 1�`Hv rQ`F #v :Qm#BM UkyyRV bm;;2bi2/ "QQH2�M
�M/ �`Bi?K2iB+ K�bFBM;- rBi? +QMp2`bBQM BM@#2ir22M

U*Qbi, O(F)V

I aBKTH2`, �TTHv "QQH2�M K�bFBM; /B`2+iHv iQ �M
�//BiBQM �H;Q`Bi?K BM bQ7ir�`25

� # + /

n

n

n

n

k f R9

Efficiency: chacha20 (a stream cipher)
Columns

Efficiency: chacha20 (a stream cipher)
Diagonals

Chacha20 void chacha_block(uint32_t out[16], uint32_t const in[16])

{

	 int i;

	 uint32_t x[16];

	 for (i = 0; i < 16; ++i)	

	 	 x[i] = in[i];

	 // 10 loops × 2 rounds/loop = 20 rounds

	 for (i = 0; i < ROUNDS; i += 2) {

	 	 // Odd round

	 	 QR(x[0], x[4], x[8], x[12]); // column 0

	 	 QR(x[1], x[5], x[9], x[13]); // column 1

	 	 QR(x[2], x[6], x[10], x[14]); // column 2

	 	 QR(x[3], x[7], x[11], x[15]); // column 3

	 	 // Even round

	 	 QR(x[0], x[5], x[10], x[15]); // diagonal 1 (main diagonal)

	 	 QR(x[1], x[6], x[11], x[12]); // diagonal 2

	 	 QR(x[2], x[7], x[8], x[13]); // diagonal 3

	 	 QR(x[3], x[4], x[9], x[14]); // diagonal 4

	 }

	 for (i = 0; i < 16; ++i)

	 	 out[i] = x[i] + in[i];

}

Is this game strong enough to capture
all feasible attacks?

Alice Bob

Genk k

c

Evem1, m2 ∈ M

b ← {0,1}
c ← Enck(mb)

Guesses b.

Wins if it is correct.

1

2

3

4

5

Alice Bob

Eve

Alice Bob

Genk k

Eve

c=Enck(m)

Alice Bob

Genk k

Eve

c=Enck(m)

Alice Bob

Genk k

Eve

c

c=Enck(m) m=Deck(c)

Alice Bob

Genk k

Eve

c

c=Enck(m) m=Deck(c)

Alice Bob

Genk k

Eve

c

???

IND-CPA attack for Symmetric Enc

IND-CPA attack for Symmetric Enc

Alice Bob

Eve

1

m

c′￼ ← Enck(m)

c′￼

1’

IND-CPA attack for Symmetric Enc

Alice Bob

Genk k

Eve

1

m

c′￼ ← Enck(m)

c′￼

1’

IND-CPA attack for Symmetric Enc

Alice Bob

Genk k

Eve

1

2m

c′￼

1’

IND-CPA attack for Symmetric Enc

Alice Bob

Genk k

Evem1, m2 ∈ M

1

2m

c′￼

1’

IND-CPA attack for Symmetric Enc

Alice Bob

Genk k

Evem1, m2 ∈ M

1

2

b ← {0,1}
c ← Enck(mb)

3

m

c′￼

1’

IND-CPA attack for Symmetric Enc

Alice Bob

Genk k

Evem1, m2 ∈ M

1

2

b ← {0,1}
c ← Enck(mb)

3

c4

m

c′￼

1’

IND-CPA attack for Symmetric Enc

Alice Bob

Genk k

Evem1, m2 ∈ M

1

2

b ← {0,1}
c ← Enck(mb)

3

Guesses b.

Wins if it is correct.

5

c4

m

c′￼

1’

Our construction can satisfy this notion if
both Alice and Bob maintain a counter of
how much random tape they have used.

Enck(m) (encryption)
Deck(c) (decryption)output

k

c

m

rG

Theorem: If One-way functions exist,

Then IND-CPA secure symmetric
encryption exists.

Goal: Symmetric encryption with a
“short” key that works for 1
arbitrarily long message

What about many messages?

Handling many messages the wrong way
Electronic CodeBook (ECB) mode:

Enc𝑘(𝑚1⋯𝑚ℓ) = (𝐹𝑘(𝑚1), 𝐹𝑘(𝑚2), …, 𝐹𝑘(𝑚ℓ))

Original
image

ECB mode
encryption

https://en.wikipedia.org/wiki/Block_cipher_mode_of_operation

Modes of Operation: AES-CTR

Modes of Operation: AES-CTR
Enc𝑘(𝑚1⋯𝑚ℓ; 𝑟)
= (𝑟, 𝐹𝑘(𝑟 + 1) ⊕ 𝑚1, 𝐹𝑘(𝑟 + 2) ⊕ 𝑚2, …, 𝐹𝑘(𝑟 + ℓ) ⊕ 𝑚ℓ)

Modes of Operation: AES-CTR
Enc𝑘(𝑚1⋯𝑚ℓ; 𝑟)
= (𝑟, 𝐹𝑘(𝑟 + 1) ⊕ 𝑚1, 𝐹𝑘(𝑟 + 2) ⊕ 𝑚2, …, 𝐹𝑘(𝑟 + ℓ) ⊕ 𝑚ℓ)

𝐹𝑘

⊕

⋯

𝑚1

𝑐1

𝑟 + 1

⋯

𝐹𝑘

⊕𝑚ℓ

𝑐ℓ

𝑟 + ℓ𝑟

𝑐0

Modes of Operation: AES-CTR
Enc𝑘(𝑚1⋯𝑚ℓ; 𝑟)
= (𝑟, 𝐹𝑘(𝑟 + 1) ⊕ 𝑚1, 𝐹𝑘(𝑟 + 2) ⊕ 𝑚2, …, 𝐹𝑘(𝑟 + ℓ) ⊕ 𝑚ℓ)

Ciphertext
expansion is

just one block

𝐹𝑘

⊕

⋯

𝑚1

𝑐1

𝑟 + 1

⋯

𝐹𝑘

⊕𝑚ℓ

𝑐ℓ

𝑟 + ℓ𝑟

𝑐0

AES-CTR is also IND-CPA secure when
nonce r is chosen uniquely for each
encryption.

