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One-time pad

12 CHAPTER 1. INTRODUCTION

By the definition of conditional probability,

Prk,m [m = m1 | Enck(m) = c] =
Prk,m [m = m1 ⇤ Enck(m) = c]

Prk,m [Enck(m) = c]

=
Prm [m = m1]Prk [Enck(m1) = c]

Prk,m [Enck(m) = c]

=
1
2 · Prk [Enck(m1) = c]
Prk,m [Enck(m) = c]

Analogously,

Prk,m [m = m2 | Enck(m) = c] =
1
2 · Prk [Enck(m2) = c]
Prk,m [Enck(m) = c]

.

Cancelling and rearranging terms, we conclude that

Prk [Enck(m1) = c] = Prk [Enck(m2) = c] .

The One-Time Pad

Given our definition of security, we turn to the question of whether per-
fectly secure encryption schemes exists. It turns out that both the encryption
schemes we have seen so far (i.e., the Caesar and Substitution ciphers) are se-
cure as long as we only consider messages of length 1. However, when con-
sidering messages of length 2 (or more) the schemes are no longer secure—in
fact, it is easy to see that encryptions of the strings AA and AB have disjoint
distributions, thus violating perfect secrecy (prove this!).

Nevertheless, this suggests that we might obtain perfect secrecy by some-
how adapting these schemes to operate on each element of a message inde-
pendently. This is the intuition behind the one-time pad encryption scheme,
invented by Gilbert Vernam and Joseph Mauborgne in 1919.

Definition 12.1. The One-Time Pad encryption scheme is described by the
following tuple (M,K,Gen,Enc,Dec).

M = {0, 1}n

K = {0, 1}n

Gen = k = k1k2. . .kn ⇥ {0, 1}n

Enck(m1m2. . .mn) = c1c2. . .cn where ci = mi � ki

Deck(c1c2. . .cn) = m1m2. . .mn where mi = ci � ki

The � operator represents the binary xor operation.

PROBLEMS:

KEY IS AS LONG AS THE MESSAGE.

REQUIRED FOR PERFECT SECURITY.



Goal: Symmetric encryption with a 
“short” key that works for 1 
arbitrarily long message

Tradeof:  Must settle for weaker 
security (not perfect)



Goal: One key to a long key

n-bits

1010 * n-bits

G



Perfect secrecy

is said to be PERFECTLY SECRET if



Perfect secrecy

is said to be PERFECTLY SECRET if

∼

Indistinguishable 
secrecy

“So close that no efficient 
computer can distinguish”



This is the idea behind a stream cipher.

n-bits

1010 * n-bits



An encryption scheme
Gen(1n) (key generation)

Enck(m) (encryption)
output

k

c

m

rG

|m|



Stream cipher
Gen: pick an n-bit binary string k

Enc(k,m): Output G(k) + m

Dec(k,c): Output G(k) + c



what security properties are needed for this to work?

n-bits

1010 * n-bits



One time pad needed keys 
from uniform distribution on 
strings of len n

Un
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what security properties are needed for this to work?

n-bits

1010 * n-bits

“Same # of 0s as 1s?”



Vigenere cipher

T H E M O D E R N S T U D Y O F  . . .MSG: 

KEY: A B H I A B H I A B H I A B H I A B H I A B H I

ciphertext: T I L U O E L Z N T A C D Z V N . . .

ABCDEFGHIJKLMNOPQRSTUVWXYZ

01234567890123456789012345



Other examples



Enigma



1010 * n-bits

{0, 1}10
10n

U1010n

should “appear” to be the same as a random string 

n-bits

G



what does it mean�
for a process G that 

produces keys to be�
pseudo-random?



“Computational Indistinguishability”�
provides a precise�
way of formulating�
pseudo-randomness



Pseudo-randomness

Un

Truly random

1010 * n-bits
G



next slide has 2 pics

are they the same
or different?





same or different?



twice the time.

same or different?



lesson:
Ability to answer correctly...



http://i.telegraph.co.uk/telegraph/multimedia/archive/01553/toss_1553792c.jpg

http://i.telegraph.co.uk/telegraph/multimedia/archive/01553/toss_1553792c.jpg


NEW PROBLEM:
consider all drawings consisting of boxes.

evens odds

# of boxes that overlap

another box is even

# of ... is odd



GAME:

I will pick a sample from either evens 

or odds, and you will have to guess

which one.



READY?





 



 
 



This game is parameterized by its size: i.e, # of boxes.



This game is parameterized by its size: i.e, # of boxes.

evensn oddsn



As the game size increases, it becomes 
intractable (for a human) to�
distinguish b/w �
evens and odd



Two ensembles are computationally 
indistinguishable if it becomes 
progressively harder for any computer 
to distinguish the two.



Two ensembles are comp. indistinguishable

48CHAPTER 3. INDISTINGUISHABILITY AND PSEUDO-RANDOMNESS

• Given any prefix, it is hard to guess the next sequence.

All of the above answers are examples of specific statistical tests—and
many many more such test exist in the litterature. For specific simulations, it
may be enough to use strings that pass some specific statistical tests. How-
ever, for cryptography, we require the use of string that passes all (efficient)
statistical tests.

3.1 Computational Indistinguihability

Towards this goal we introduce the notion of computational indistinguishabil-
ity—formalizing what it means for two probability distributions to “look”
the same in the eyes of a computationally bounded adversary. This notion is
one of the corner stones of modern cryptography. As our treatment is asymp-
totic, the actual formalization of this notion considers sequences—called en-
sembles—of probability distributions (or growing output lenght).

Definition 48.1 (Ensembles of Probability Distributions). ...add

Definition 48.1. (Computational Indistinguishability). Let {Xn}n�N ,{Yn}n�N

be ensembles of probability distributions where Xn, Yn are probability distri-
butions over {0, 1}l(n) for some polynomial l(·). We say that {Xn}n�N and
{Yn}n�N are computationally indistinguishable (abbr. {Xn}n�N ⇤ {Yn}n�N ) if
for all non-uniform PPT D (called the “distinguisher”), there exists a negligi-
ble function �(n) s.t ⌃n ⇧ N

|Pr [t ⌅ Xn, D(t) = 1]� Pr [t ⌅ Yn, D(t) = 1] | ⇥ �(n).

In other words, two (ensembles of) probability distributions are computa-
tionally indisinguishable if no efficient distinguisher D can tell them apart
better than with a negligible advantage. [Rafael’s Note: HW, show that this
means i cannot guess better than 1/2 which one it was ]

To simplify notation, we say that D distinguishes the distributions Xn and
Yn with probability �

|Pr [t ⌅ Xn, D(t) = 1]� Pr [t ⌅ Yn, D(t) = 1] | > �.

Additionally, we say D distinguishes the probability ensembles {Xn}n�N and
{Yn}n�N with probability µ(·) if ⌃n ⇧ N , D distinguishes Xn and Yn with
probability µ(n).
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if for all non-uniform p.p.t. alg D,

there exists a negligible function 

such that for all n
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if for all non-uniform p.p.t. alg D,

there exists a negligible function 

such that for all n



Polynomial vs. Exponential
• Consider the functions  and 

• Which function is “bigger”? 

𝑓(𝑛) = 2𝑛3 + 1 𝑔(𝑛) = 2𝑛

 

11 2663 2048

12 3457 4096

13 4395 8192

14 5489 16384

20 16001 1,048,576

30 54001 1,073,741,824

35 85751 34,359,738,368



Polynomial vs. Exponential



Polynomial vs. Exponential
• A function is negligible if it approaches  faster than any inverse polynomial0



Polynomial vs. Exponential
• A function is negligible if it approaches  faster than any inverse polynomial0

• Definition: A function  is a negligible function if for any positive 
polynomial  there exists  such that for all  it holds that  

𝑓:ℕ → ℝ
𝑝( ⋅ ) 𝑁 𝑛 > 𝑁

𝑓(𝑛) <
1

𝑝(𝑛)
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Polynomial vs. Exponential
• A function is negligible if it approaches  faster than any inverse polynomial0

• Definition: A function  is a negligible function if for any positive 
polynomial  there exists  such that for all  it holds that  

𝑓:ℕ → ℝ
𝑝( ⋅ ) 𝑁 𝑛 > 𝑁

𝑓(𝑛) <
1

𝑝(𝑛)

• For example: ,  and  are negligible functions2−𝑛 2− 𝑛 2−log2(𝑛)

• ,  and  are non-negligible functions1/2 1/log2(𝑛) 1/𝑛5



pseudo-random



pseudo-random
An algorithm {G} is said to be



pseudo-random
if

{k ← {0,1}n : G(k)}n {Uℓ}ℓ(n)≈
“The output of the PRG, when 

evaluated on seeds of 
increasing length”

“Truly uniform strings of the 
same length as the output of 

the PRG”



pseudo-random
An algorithm {G} is said to be

if

{k ← {0,1}n : G(k)}n {Uℓ}ℓ(n)≈
“The output of the PRG, when 

evaluated on seeds of 
increasing length”

“Truly uniform strings of the 
same length as the output of 

the PRG”



Original goal

n-bits

1010 * n-bits



Pseudo-random generator

is a pseudo-random generator if

A family of functions G : {0,1}n → {0,1}m



Pseudo-random generator
A family of functions 

is a pseudo-random generator if

G can be computed in p.p.t.

for some

is pseudo-random

G : {0,1}n → {0,1}m



Pseudo-randomness

Un

Truly random

1010 * n-bits
G



The same notion of 
indistinguishability helps us define 
security for symmetric encryption.



Perfect secrecy

is said to be PERFECTLY SECRET if



Perfect secrecy

is said to be PERFECTLY SECRET if

∼

Indistinguishable 
secrecy

“So close that no efficient 
computer can distinguish”



computational secrecy

is said to be computationally secure if



Simple security game for Enc

Alice Bob

Eve



Simple security game for Enc

Alice Bob

Genk k

Eve



Simple security game for Enc

Alice Bob

Genk k

Evem1, m2 ∈ M



Simple security game for Enc

Alice Bob

Genk k

Evem1, m2 ∈ M

b ← {0,1}
c ← Enck(mb)



Simple security game for Enc

Alice Bob

Genk k

c

Evem1, m2 ∈ M

b ← {0,1}
c ← Enck(mb)



Simple security game for Enc

Alice Bob

Genk k

c

Evem1, m2 ∈ M

b ← {0,1}
c ← Enck(mb)

Guesses b.

Wins if it is correct.



Simple security game for Enc

Alice Bob

Genk k

c

Evem1, m2 ∈ M

b ← {0,1}
c ← Enck(mb)

Guesses b.

Wins if it is correct.

1

2

3

4

5

Given a secure PRG, 

then (Gen, Enc, Dec) described earlier is secure in this game.



How can we build �
pseudo-random�
generators and 

symmetric encryption?



Two ways to build PRGS + Symmetric Enc

Principled Heuristic



Modern version: AES



AES(k,m)



AES(k,m)



AES(k,m)



AES(k,m)

Add round key 1 into m
For i=1…9:


SubBytes: apply a map to all bytes

ShiftRows: permute the bytes

MixColumns: permute columns

AddRoundKey i+1

SubBytes: apply a map to all bytes

ShiftRows: permute the bytes

AddRoundKey i+1



Main security comes from s-box



AES is very fast. https://calomel.org/aesni_ssl_performance.html



Efficiency: chacha20 (a stream cipher)
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Efficiency: chacha20 (a stream cipher)
Columns



Efficiency: chacha20 (a stream cipher)
Diagonals



Chacha20 void chacha_block(uint32_t out[16], uint32_t const in[16])

{

	 int i;

	 uint32_t x[16];


	 for (i = 0; i < 16; ++i)	

	 	 x[i] = in[i];

	 // 10 loops × 2 rounds/loop = 20 rounds

	 for (i = 0; i < ROUNDS; i += 2) {

	 	 // Odd round

	 	 QR(x[0], x[4], x[ 8], x[12]); // column 0

	 	 QR(x[1], x[5], x[ 9], x[13]); // column 1

	 	 QR(x[2], x[6], x[10], x[14]); // column 2

	 	 QR(x[3], x[7], x[11], x[15]); // column 3

	 	 // Even round

	 	 QR(x[0], x[5], x[10], x[15]); // diagonal 1 (main diagonal)

	 	 QR(x[1], x[6], x[11], x[12]); // diagonal 2

	 	 QR(x[2], x[7], x[ 8], x[13]); // diagonal 3

	 	 QR(x[3], x[4], x[ 9], x[14]); // diagonal 4

	 }

	 for (i = 0; i < 16; ++i)

	 	 out[i] = x[i] + in[i];

}




Is this game strong enough to capture 
all feasible attacks?

Alice Bob

Genk k

c

Evem1, m2 ∈ M

b ← {0,1}
c ← Enck(mb)

Guesses b.

Wins if it is correct.

1

2

3

4

5





Alice Bob

Eve



Alice Bob

Genk k

Eve



c=Enck(m)

Alice Bob

Genk k

Eve



c=Enck(m)

Alice Bob

Genk k

Eve

c



c=Enck(m) m=Deck(c)

Alice Bob

Genk k

Eve

c



c=Enck(m) m=Deck(c)

Alice Bob

Genk k

Eve

c

???



IND-CPA attack for Symmetric Enc



IND-CPA attack for Symmetric Enc

Alice Bob

Eve

1

m

c′￼ ← Enck(m)

c′￼

1’



IND-CPA attack for Symmetric Enc

Alice Bob

Genk k

Eve

1

m

c′￼ ← Enck(m)

c′￼

1’



IND-CPA attack for Symmetric Enc

Alice Bob

Genk k

Eve

1

2m

c′￼

1’



IND-CPA attack for Symmetric Enc

Alice Bob

Genk k

Evem1, m2 ∈ M

1

2m

c′￼

1’



IND-CPA attack for Symmetric Enc

Alice Bob

Genk k

Evem1, m2 ∈ M

1

2

b ← {0,1}
c ← Enck(mb)

3

m

c′￼

1’



IND-CPA attack for Symmetric Enc

Alice Bob

Genk k

Evem1, m2 ∈ M

1

2

b ← {0,1}
c ← Enck(mb)

3

c4

m

c′￼

1’



IND-CPA attack for Symmetric Enc

Alice Bob

Genk k

Evem1, m2 ∈ M

1

2

b ← {0,1}
c ← Enck(mb)

3

Guesses b.

Wins if it is correct.

5

c4

m

c′￼

1’



Our construction can satisfy this notion if 
both Alice and Bob maintain a counter of 
how much random tape they have used.

Enck(m) (encryption)
Deck(c) (decryption)output

k

c

m

rG



Theorem: If One-way functions exist,

Then IND-CPA secure symmetric 
encryption exists.



Goal: Symmetric encryption with a 
“short” key that works for 1 
arbitrarily long message

What about many messages?



Handling many messages the wrong way
Electronic CodeBook (ECB) mode:

Enc𝑘(𝑚1⋯𝑚ℓ) = (𝐹𝑘(𝑚1), 𝐹𝑘(𝑚2), …, 𝐹𝑘(𝑚ℓ))
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https://en.wikipedia.org/wiki/Block_cipher_mode_of_operation
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Ciphertext 
expansion is 

just one block
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AES-CTR is also IND-CPA secure when 
nonce r is chosen uniquely for each 
encryption.


