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Abstract

We study an adaptive variant of oblivious transfer in which a sender has N messages, of which
a receiver can adaptively choose to receive k one-after-the-other, in such a way that (a) the sender
learns nothing about the receiver’s selections, and (b) the receiver only learns about the k requested
messages. We propose two practical protocols for this primitive that achieve a stronger security
notion than previous schemes with comparable efficiency. In particular, by requiring full simulata-
bility for both sender and receiver security, our notion prohibits a subtle selective-failure attack not
addressed by the security notions achieved by previous practical schemes.

Our first protocol is a very efficient generic construction from unique blind signatures in the
random oracle model. The second construction does not assume random oracles, but achieves
remarkable efficiency with only a constant number of group elements sent during each transfer.
This second construction uses novel techniques for building efficient simulatable protocols.

1 Introduction

The oblivious transfer (OT) primitive, introduced by Rabin [Rab81], and extended by Even, Goldreich,
and Lempel [EGL85] and Brassard, Crépeau and Robert [BCR87] is deceptively simple: there is a
sender S with messages M1, . . . ,MN and a receiver R with a selection value σ ∈ {1, . . . , N}. The
receiver wishes to retrieve Mσ from S in such a way that (1) the sender does not “learn” anything
about the receiver’s choice σ and (2) the receiver “learns” only Mσ and nothing about any other
message Mi for i 6= σ. Part of the allure of OT is that it is complete, i.e., if OT can be realized,
virtually any secure multiparty computation can be [GMW87, CK90].

In this paper, we consider an adaptive version of oblivious transfer in which the sender and receiver
first run an initialization phase during which the sender commits to a “database” containing her
messages. Later on, the sender and receiver interact as before so that the receiver can retrieve some
message Mσ. In addition, we allow the receiver to interact with the sender k− 1 additional times, one
interaction after the other, in order to retrieve additional values from the sender’s database. Notice
here that we specifically model the situation in which the receiver’s selection in the ith phase can
depend on the messages retrieved in the prior i − 1 phases. This type of adaptive OT problem is
central to a variety of practical problems such as patent searches, treasure hunting, location-based
services, oblivious search, and medical databases [NP99b].

The practicality of this adaptive OT problem also drives the need for efficient solutions to it. Ideally,
a protocol should only require communication linear in N and the security parameter κ during the
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initialization phase (so that the sender commits to the N messages), and an amount of communication
of O(max(κ, log N)) during each transfer phase (so that the receiver can use cryptography and encode
the index of his choice).1 In the race to achieve these efficiency parameters, however, we must also
not overlook—or worse, settle for less-than-ideal security properties.

1.1 Security Definitions of Oblivious Transfer

An important contribution of this work is that it achieves a stronger simulation-based security notion
at very little cost with respect to existing schemes that achieve weaker notions. We briefly summarize
the various security notions for OT presented in the literature, and how our notion extends them.

1.1.1 Honest-but-curious model.

In this model, all parties are assumed to follow the protocol honestly. Security guarantees that after
the protocol completes, a curious participant cannot analyze the transcript of the protocol to learn
anything else. Any protocol in the honest-but-curious model can be transformed into fully-simulatable
protocols, albeit at the cost of adding complexity assumptions and requiring costly general zero-
knowledge proofs for each protocol step.

1.1.2 Half-simulation.

This notion, introduced by Naor and Pinkas [NP05], considers malicious senders and receivers, but
handles their security separately. Receiver security is defined by requiring that the sender’s view of the
protocol when the receiver chooses index σ is indistinguishable from a view of the protocol when the
receiver chooses σ′. Sender security, on the other hand, involves a stronger notion. The requirement
follows the real-world/ideal-world paradigm and guarantees that any malicious receiver in the real
world can be mapped to a receiver in an idealized game in which the OT is implemented by a trusted
party. Usually, this requires that receivers are efficiently “simulatable,” thus we refer to this notion
as half-simulation.

1.1.3 The Problem of Selective Failure.

We argue that the definition of half-simulation described above does not imply all properties that one
may expect from a OT N

k×1 scheme. Notice that a cheating sender can always force the current transfer
fail by sending bogus messages. However, we would not expect the sender to be able to cause failure
based on some property of the receiver’s selection. Of course, the sender can also prevent the receiver
from retrieving Mσ by replacing it with a random value during the initialization phase. But again, the
sender should not be able to make this decision anew at each transfer phase. For example, the sender
should not be able to make the first transfer fail for σ = 1 but succeed for σ ∈ {2, . . . , N}, and to
make the second transfer fail for σ = 2 but succeed for σ ∈ {1, 3, . . . , N}. The receiver could publicly
complain whenever a transfer fails, but by doing so it gives up the privacy of its query. Causing
transfers to fail may on the long term harm the sender’s business, but relying on such arguments to
dismiss the problem is purely subjective. A desperate patent search database may choose to make
faster money by selling a company’s recent queries to competitors than by continuing to run its service.

We refer to this issue as the selective-failure problem. To see why it is not covered by the half-
simulation notion described above, it suffices to observe that the notion of receiver security only hides
the message received by the receiver from the cheating sender’s view. A scheme that is vulnerable

1In practice, we assume that κ > log(N)—so that the protocol can encode the receiver’s selection—but otherwise
that κ is chosen purely for the sake of security. In this sense, O(κ) is both conceptually and practically different than
O(polylog(N)).
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to selective-failure attacks does not give the cheating sender any additional advantage in breaking
the receiver’s privacy, and may therefore be secure under such a notion. (This illustrates the classic
argument from work in secure multiparty computation that achieving just privacy is not enough; both
privacy and correctness must be achieved simultaneously.) In fact, the schemes of [NP05] are secure
under half-simulation, yet vulnerable to selective-failure attacks. In an earlier version [NP99b], the
same authors recognize this problem and remark that it can be fixed, but do not give formal support
of their claim. A main contribution of this work is to show that it can be done without major sacrifices
in efficiency.

1.1.4 Simulatable OT.

The security notion that we consider employs the real-world/ideal-world paradigm for both receiver
and sender security. We extend the functionality of the trusted party such that at each transfer,
the sender inputs a bit b indicating whether it wants the transfer to succeed or fail. This models
the capability of a sender in the real world to make the transfer fail by sending bogus messages,
but does not enable it to do so based on the receiver’s input σ. Moreover, for security we require
indistinguishability of the combined outputs of the sender and the receiver, rather than only of the
output of the dishonest party. The output of the honest receiver is assumed to consist of all the
messages Mσ1 , . . . ,Mσk

that it received. This security notion excludes selective-failure attacks in
the real world, because the ideal-world sender is unable to perform such attacks, which will lead to
noticeable differences in the receiver’s output in the real and ideal world.

Finally, we observe that simulatable oblivious transfer is used as a primitive to build many other
cryptographic protocols [Gol04]. By building an efficient OT protocol with such simulation, we make
it possible to realize many other interesting cryptographic protocols.

1.2 Construction Overview

1.2.1 Our random-oracle protocol.

Our first construction is a black-box construction using any unique blind signature scheme. By unique,
we mean that for all public keys and messages there exists at most one valid signature. First, the
sender generates a key pair (pk , sk) for the blind signature scheme, and “commits” to each message in
its database by xor-ing the message Mi with H(i, si), where si is the unique signature of the message
i under pk . Intuitively, we’re using si as a key to unlock the message Mi. To retrieve the “key” to
a message Mi, the sender and receiver engage in the blind signature protocol for message i. By the
unforgeability of the signature scheme, a malicious receiver will be unable to unlock more than k such
messages. By the blindness of the scheme, the sender learns nothing about which messages have been
requested.

The random oracle serves four purposes. First, it serves as a one-time pad to perfectly hide the
messages. Second, it allows a simulator to extract the sender’s original messages from the commitments
so that we can prove receiver-security. Third, in the proof of sender-security, it allows the simulator
to both extract the receiver’s choice and, via programming the random oracle, to make the receiver
open the commitment to an arbitrary message. Finally, it allows us to extract forgeries of the blind
signature scheme from a malicious receiver who is able to break sender-security.

1.2.2 Our standard-model protocol.

There are three main ideas behind the standard protocol in §4. At a very high level, just as in
the random oracle protocol, the sender uses a unique signature of i as a key to encrypt Mi in the
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initialization phase. However, unlike the random-oracle protocol, we observe here that we only need
a blind signature scheme which allows signatures on a small, a-priori fixed message space {1, . . . , N}.

The second idea concerns the fact that after engaging in the blind-signing protocol, a receiver can
easily check whether the sender has sent the correct response during the transfer phase by verifying
the signature it received. While seemingly a feature, this property becomes a problem during the
simulation of a malicious receiver. Namely, the simulator must commit to N random values during
the initialize phase, and later during the transfer phase, open any one of these values to an arbitrary
value (the correct message Mi received from the trusted party during simulation). In the random
oracle model, this is possible via programming the random oracle. In the standard model, a typical
solution would be to use a trapdoor commitment. However, a standard trapdoor commitment is
unlikely to work here because most of these require the opener to send the actual committed value
when it opens the commitment. This is not possible in our OT setting since the sender does not know
which commitment is being opened.

Our solution is to modify the “blind-signing” protocol so that, instead of returning a signature
to the user, a one-way function (a bilinear pairing in our case) of the signature is returned. To
protect against a malicious sender, the sender then proves in zero-knowledge that the value returned
is computed correctly. In the security proof, we will return a random value to the receiver and fake
the zero-knowledge proof.

The final idea behind our construction concerns a malicious receiver who may use an invalid input
to the “blind-signature protocol” in order to, say, retrieve a signature on a value outside of {1, . . . , N}.
This is a real concern, since such an attack potentially allows a malicious receiver to learn the product
Mi ·Mj which violates the security notion. In order to prevent such cheating, we require the receiver
to prove in zero-knowledge that (a) it knows the input it is requesting a signature for, and (b) that the
input is valid for the protocol. While this is conceptually simple, the problem is that the size of such
a theorem statement, and therefore the time and communication complexity of such a zero-knowledge
proof, could potentially be linear in N . For our stated efficiency goals, we need a proof of constant size.
To solve this final problem, we observe that the input to the blind signature process is a small set—i.e.,
only has N possible values. Thus, the sender can sign all N possible input messages (using a different
signing key x) to the blind signature protocol and publish them in the initialization phase. During
the transfer phase, the receiver blinds one of these inputs and then gives a zero-knowledge proof of
knowledge that it knows a signature of this blinded input value. Following the work of Camenisch and
Lysyanskaya [CL04], there are very efficient proofs for such statements which are constant size.

Finally, in order to support receiver security, the sender provides a proof of knowledge of the
“commitment key” used to commit to its input message. This key can thus be extracted from the
proof of knowledge and use it to compute messages to send to the trusted party.

1.3 Related Work

The concept of oblivious transfer was proposed by Rabin [Rab81] (but considered earlier by Wies-
ner [Wie83]) and further generalized to one-out-of-two OT (OT 2

1) by Even, Goldreich and Lem-
pel [EGL85] and one-out-of-N OT (OT N

1 ) by Brassard, Crépeau and Robert [BCR87]. A complete
history of the work on OT is beyond our scope. In particular, here we do not mention constructions of
OT which are based on generic zero-knowlege techniques or setup assumptions. See Goldreich [Gol04]
for more details.

Bellare and Micali [BM90] presented practical implementations of OT 2
1 under the honest-but-

curious notion and later Naor and Pinkas [NP01] did the same under the half-simulation definition.
Brassard et al. [BCR87] showed how to implement OT N

1 using N applications of a OT 2
1 protocol.

Under half-simulation, Naor and Pinkas [NP99a] gave a more efficient construction requiring only
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log N OT 2
1 executions. Several direct 2-message OT N

1 protocols (also under half-simulation) have
been proposed in various works [NP01, AIR01, Kal05].

The first adaptive k-out-of-N oblivious transfer (OT N
k×1) protocol is due to Naor and Pinkas [NP99b].

Their scheme is secure under half-simulation and involves O(log N) invocations of a OT 2
1 protocol

during the transfer stage. Using optimistic parameters, this translates into a protocol with O(log N)
rounds and at least O(k log N) communication complexity during the transfer phase. The same au-
thors also propose a protocol requiring 2 invocations of a OT

√
N

1 protocol. Laur and Lipmaa [LL06]
build an OT N

k×1 in which k must be a constant. Their security notion specifically tolerates selective-
failure, and the efficiency of their construction depends on the efficiency of the fully-simulatable OT N

1

and the equivocable (i.e., trapdoor) list commitment scheme which are used as primitives.
In the random oracle model, Ogata and Kurosawa [OK04] and Chu and Tzeng [CT05] propose two

efficient OT N
k×1 schemes satisfying half-simulation which require O(k) computation and communication

during the transfer stage. Our first generic OT N
k×1 construction based on unique blind signatures covers

both schemes as special cases, offers full simulation-security, and fixes minor technical problems to
prevent certain attacks. Prior to our work, Malkhi and Sella [MS03] observed a relation between OT
and blind signatures, but did not give a generic transformation between the two. They present a direct
OT N

1 protocol (also in the random oracle model) based on Chaum’s blind signatures [Cha88]. Their
scheme could be seen as a OT N

k×1 protocol as well, but it has communication complexity O(κN) in
the transfer phase. Their scheme is not an instantiation of our generic construction.

OT N
k×1 can always be achieved by publishing commitments to the N data items, and executing k

OT N
1 protocols on the N pieces of opening information. This solution incurs costs of O(κN) in each

transfer phase.

PIR Naor and Pinkas [NP05] demonstrate a way to transform a singe-server private-information
retrieval scheme (PIR) into an oblivious transfer scheme with sublinear-in-N communication com-
plexity. This transformation is in the half-simulation model and the dozen or so constructions of OT
from PIR seem to also be in this model. Moreover, there are no adaptive PIR schemes known.

2 Definitions

Notation. Let N be the set of natural numbers {0, 1, 2, . . .}. The empty string is denoted ε. If A is
a randomized algorithm, then y

$← A(x) denotes the assignment to y of the output of A on input x
when run with fresh random coins.

2.1 Blind Signatures

A blind signature scheme BS is a tuple of algorithms (Kg,Sign,User,Vf). The signer generates a key
pair via the key generation algorithm (pk , sk) $← Kg. To obtain a signature on a message M , the
user and signer engage in an interactive signing protocol dictated by the User(pk ,M ) and Sign(sk)
algorithms. At the end of the protocol, the User algorithm returns a signature s or ⊥ to indicate
rejection. The verification algorithm Vf(pk ,M , s) returns 1 if the signature is deemed valid and 0
otherwise. Correctness requires that Vf(pk ,M , s) = 1 for all (pk , sk) output by the Kg algorithm, for
all M ∈ {0, 1}∗ and for all signatures output by User(pk ,M ) after interacting with Sign(sk). We say
that BS is unique [GO92] if for each public key pk ∈ {0, 1}∗ and each message M ∈ {0, 1}∗ there
exists at most one signature s ∈ {0, 1}∗ such that Vf(pk ,M , s) = 1.

The security of blind signatures is twofold. On the one hand, one-more unforgeability [PS96]
requires that no adversary can output n+1 valid message-signature pairs after being given the public
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key as input and after at most n interactions with a signing oracle. We say that BS is (t, qS, ε)-
unforgeable if no algorithm running in time at most t and making at most qS signing queries has
probability greater than ε of winning this game.

Blindness, on the other hand, requires that the signer cannot tell apart the message it is signing.
The notion was first formalized by Juels et al. [JLO97], and was later strengthened to dishonest-
key blindness [ANN06, Oka06] which allows the signer to choose the public key maliciously. In this
work, we further strengthen the definition to selective-failure blindness. Intuitively, it prevents a
cheating signer from making the user algorithm fail depending on the message that is being signed.
This property seems important in practice, yet is not implied by any of the existing definitions. For
example, consider a voting protocol where an administrator issues blind signatures on the voters’
votes [FOO93]. If the scheme is not selective-failure blind, the administrator could for example let
the protocol fail for votes for John Kerry, but let it proceed normally for votes for George W. Bush.
Affected Kerry voters could complain, but by doing so they give up the privacy of their vote.

Selective-failure blindness is defined through the following game. The adversary first outputs a
public key pk and two messages M0,M1. It is then given black-box access to two instances of the
user algorithm, the first implementing User(pk ,Mb) and the second implementing User(pk ,M1−b) for
a random bit b

$← {0, 1}. Eventually, these algorithms produce local output sb and s1−b, respectively.
If sb 6= ⊥ and s1−b 6= ⊥, then the adversary is given the pair (s0, s1); if sb = ⊥ and s1−b 6= ⊥, then it is
given (⊥, ε); if sb 6= ⊥ and s1−b = ⊥, then it is given (ε,⊥); and if sb = s1−b = ⊥ it is given (⊥,⊥). (It
is here that our definition is stronger than the existing ones: in the existing definition, the adversary
is simply given ⊥ if either algorithm fails.) The adversary then guesses the bit b. The scheme BS
is said to be (t, ε) adversary running in time at most t has a probability greater than 1/2 + ε/2 of
winning the above game.

2.2 Simulatable Adaptive Oblivious Transfer

An adaptive k-out-of-N oblivious transfer scheme OT N
k×1 is a tuple of four algorithms (SI,RI,ST,RT).

During the initialization phase, the sender and receiver perform an interactive protocol where the
sender runs the SI algorithm on input messages M1, . . . ,MN , while the receiver runs the RI algorithm
without input. At the end of the initialization protocol, the SI and RI algorithm produce as local
outputs state information S0 and R0, respectively. During the i-th transfer, 1 ≤ i ≤ k, the sender
and receiver engage in a selection protocol dictated by the ST and RT algorithms. The sender runs
ST(Si−1) to obtain updated state information Si, while the receiver runs the RT algorithm on input
state information Ri−1 and the index σi of the message it wishes to receive, to obtain updated state
information Ri and the retrieved message M ′

σi
. Correctness requires that M ′

σi
= Mσi for all messages

M1, . . . ,MN , for all selections σ1, . . . , σk ∈ {1, . . . , N} and for all coin tosses of the algorithms.
To capture security of an OT N

k×1 scheme, we employ the real-world/ideal-world paradigm. Below,
we describe a real experiment in which the parties run the protocol, while in the ideal experiment
the functionality is implemented through a trusted third party. For the sake of simplicity, we do not
explicitly include auxiliary inputs to the parties. This can be done, and indeed must be done for
sequential composition of the primitive, and our protocols achieve this notion as well.

Real experiment. We first explain the experiment for arbitrary sender and receiver algorithms
Ŝ and R̂. The experiment RealbS,bR(N, k,M1, . . . ,MN ,Σ) proceeds as follows. Ŝ is given messages

(M1, . . . ,MN ) as input and interacts with R̂(Σ), where Σ is an adaptive selection algorithm that, on
input messages Mσ1 , . . . ,Mσi−1 , outputs the index σi of the next message to be queried. In their first
run, Ŝ and R̂ produce initial states S0 and R0 respectively. Next, the sender and receiver engage in
k interactions. In the i-th interaction for 1 ≤ i ≤ k, the sender and receiver interact by running
Si

$← Ŝ(Si−1) and (Ri,M ∗
i ) $← R̂(Ri−1), and update their states to Si and Ri, respectively. Note that
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M ∗
i may be different from Mσi when either participant cheats. At the end of the k-th interaction,

sender and receiver output strings Sk and Rk respectively. The output of the RealbS,bR experiment is
the tuple (Sk,Rk).

For an OT N
k×1 scheme (SI,ST,RI,RT), define the honest sender S algorithm as the one which runs

SI(M1, . . . ,MN ) in the initialization phase, runs ST in all following interactions, and always outputs
Sk = ε as its final output. Define the honest receiver R as the algorithm which runs RI in the
initialization phase, runs RT(Ri−1, σi) and in the i-th interaction, where Σ is used to generate the
index σi, and returns the list of received messages Rk = (Mσ1 , . . . ,Mσk

) as its final output.

Ideal experiment. In experiment IdealbS′,bR′(N, k,M1, . . . ,MN ,Σ), the (possibly cheating) sender

algorithm Ŝ′(M1, . . . ,MN ) generates messages M ∗
1 , . . . ,M ∗

N and hands these to the trusted party T.
In each of the k transfer phases, T receives a bit bi from the sender Ŝ′ and an index σ∗i from the
(possibly cheating) receiver R̂′(Σ). If bi = 1 and σ∗i ∈ {1, . . . , N}, then T hands M ∗

σ∗
i

to the receiver;

otherwise, it hands ⊥ to the receiver. At the end of the k-th transfer, Ŝ′ and R̂′ output a string Sk

and Rk; the output of the experiment is the pair (Sk,Rk).
Note that the sender’s bit bi models its ability to make the current transfer fail. However, the

sender’s decision to do so is independent of the index σi that is being queried by the receiver. This
captures the strongest notion of “coherence” as envisaged by [LL06], and excludes schemes like [NP99b]
that allow the sender to cause selective failure.

As above, define the ideal sender S′(M1, . . . ,MN ) as one who sends messages M1, . . . ,MN to the
trusted party in the initialization phase, sends bi = 1 in all transfer phases, and uses Sk = ε as its
final output. Define the honest ideal receiver R′ as the algorithm which generates its selection indices
σi through Σ and submits these to the trusted party. Its final output consists of all the messages it
received Rk = (Mσi , . . . ,MσN ).

Sender security. We say that OT N
k×1 is (t, t′, tD, ε)-sender-secure if for any real-world cheating re-

ceiver R̂ running in time t, there exists an ideal-world receiver R̂′ running in time t′ such that
for any N ∈ [1, t], any k ∈ [0, N ], any messages M1, . . . ,MN , and any selection algorithm Σ,
no distinguisher D running in time tD has success probability greater than ε to distinguish the
distributions

Real
S,bR(N, k,M1, . . . ,MN ,Σ) and Ideal

S′,bR′(N, k,M1, . . . ,MN ,Σ)

is negligible in κ.

Receiver security. We say that OT N
k×1 is (t, t′, tD, ε)-receiver-secure if for any real-world cheating

sender Ŝ running in time t, there exists an ideal-world sender Ŝ′ running in time t′ such that
for any N ∈ N, any k ∈ [0, N ], any messages M1, . . . ,MN , and any selection strategy Σ, no
distinguisher D running in time tD has success probability greater than ε to distinguish the
distributions

RealbS,R
(N, k,M1, . . . ,MN ,Σ) and IdealbS′,R′(N, k,M1, . . . ,MN ,Σ)

is negligible in κ.

In the random oracle model [?], all algorithms (including the adversaries) additionally have access to
a random oracle H. The adversarial algorithms Ŝ and R̂ can query this oracle up to qH times.

3 A Generic Construction in the Random Oracle Model

In this section, we describe a generic yet very efficient way of constructing adaptive k-out-of-N OT
schemes from unique blind signature schemes, and prove its security in the random oracle model.
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3.1 The Construction

To any unique blind signature scheme BS = (Kg,Sign,User,Vf), we associate the OT N
k×1 scheme as

depicted in Figure 1. The security of the oblivious transfer scheme follows from that of the blind

Initialization

SI(M1, . . . ,MN ) : RI :

(pk , sk) $← Kg(1κ)
For i = 1 . . . N

si ← Sign(sk , i)

Ci ← H(i, si)⊕Mi
pk ,C1, . . . ,CN- R0 ← (pk ,C1, . . . ,CN )

S0 ← sk ; Output S0 Output R0

Transfer

ST(Si−1) : RT(Ri−1, σi) :
Parse Si−1 as sk Parse Ri−1 as (pk ,C1, . . . ,CN )
Run protocol Sign(sk) -� Run protocol si

$← User(pk , σi)
If Vf(pk , σi, si) = 0 then Mσi ← ⊥
Else Mσi ← Cσi ⊕H(i, si)

Output Si = Si−1 Output (Ri = Ri−1,Mσi)

Figure 1: A construction of OT N
k×1 using a random oracle H and any unique blind signature scheme

BS = (Kg,Sign,User,Vf).

signature scheme. In particular, Theorem 3.1 states that the sender’s security is implied by the one-
more unforgeability of BS , while Theorem 3.4 states that the receiver’s security follows from the
selective-failure blindness of BS . The proof of the former is provided in Appendix ??.

Theorem 3.1 If the blind signature scheme BS is (t′′, q′′S, ε′′)-unforgeable, then the OT N
k×1 scheme

described above is (t, t′, tD, qH, ε)-sender-secure in the random oracle model for any ε ≥ ε′′, k ≤ q′′S,
t ≤ t′′− qH · tVf , and t′ ≥ t+ tKg +k · tSign + qH · tVf , where tKg, tSign and tVf are the time steps required
for an execution of the key generation, signing and verification algorithm of BS , respectively.

Proof: For any real-world cheating receiver R̂, consider the ideal-world receiver R̂′ that works as
follows. R̂′ generates a fresh key pair (pk , sk) $← Kg for the blind signature scheme BS and chooses
random strings C1, . . . ,CN

$← {0, 1}`. It then feeds the string (pk ,C1, . . . ,CN ) as input to R̂ to obtain
initial state R0.

During the transfer phase, when R̂ engages in a transfer protocol, R̂′ simulates the honest sender by
executing the blind signature protocol as prescribed by Sign(sk). To answer random oracle queries, R̂′

maintains an initially empty associative array HT[·] and a counter ctr . When R̂ performs a random
oracle query H(x), R̂′ responds with HT[x], or proceeds as follows if this entry is undefined:

If x = (i, s) and Vf(pk , i, s) = 1 and i ∈ [1, N ] then
ctr ← ctr + 1 ; If ctr > k then halt with output ⊥
Obtain Mi from the ideal functionality
HT[x]← Mi ⊕ Ci

else HT[x] $← {0, 1}` .
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When eventually R̂ outputs a string τ , R̂′ halts with the same output τ . The running time t′ of R̂′ is
that of R̂ plus the time of a key generation, k signing interactions and up to qH signature verifications,
i.e. t′ = t + tKg + k · tSign + qH · tVf .

Claim 3.2 Conditioned on the event that R̂′ does not abort, R̂′ perfectly simulates the environment
of the Real

S,bR(N, k,M1, . . . ,Mk,Σ) experiment.

Proof: The only differences between the two environments occur in the initialization message and
the simulation of the random oracle. In both environments, the initialization message contains a fresh
public key pk and N random `-bit strings. The responses to R̂’s random oracle queries are random `-bit
strings, except for queries of the form H(i, s) where s is the unique signature such that Vf(pk , i, s) = 1.
For these queries, the unique value Mi ⊕ Ci is returned. Since Ci is a randomly chosen string, the
distribution of Mi ⊕ Ci will also be a random `-bit string.

Claim 3.3 The probability that R̂′ aborts is at most ε′′.

Proof: Given a real-world adversary R̂, integers N, k and messages M1, . . . ,MN such that R̂′ aborts
with probability greater than ε′′, we construct a forger F against BS with advantage greater than ε′′.
The code of F is identical to that of R̂′, except that (1) it relays messages between its signing oracle
and R̂ to simulate R̂’s transfer queries, and (2) rather than aborting when ctr > k, it outputs all k +1
valid message-signature pairs (i, s) that R̂ submitted to the random oracle. Since R̂ can engage in at
most k transfer protocols, R̂′ outputs k + 1 valid signatures after at most k signature queries, and
hence wins the game. The running time t′′ of F is the running time t of R̂ plus the time needed for qH

signature verifications.

From the first claim, we know that as long as R̂′ does not abort, the distributions Real
S,bR(N, k,

M1, . . . ,MN ,Σ) and Ideal
S′,bR′(N, k,M1, . . . ,MN ,Σ) are identical, so not even an unbounded distin-

guisher D can have any advantage in telling them apart. The probability that R̂′ aborts however
introduces a statistical difference ε′′ between the distributions. Hence, even an unbounded distin-
guisher D has advantage at most ε ≤ ε′′.

Theorem 3.4 If the blind signature scheme BS is (t′′, ε′′) selective-failure blind, then the OT N
k×1

scheme described above is (t, t′, tD, qH, ε)-receiver-secure in the random oracle model for all ε ≥ 2 · ε′
and

tD ≤ t′′ − t− tΣ − k · tUser

t′ ≥ t + tΣ + (qH + k) · tVf + k · tUser

where tUser, tVf and tΣ are the running times of the User, Vf and Σ algorithms, respectively.

Proof: For any real-world cheating sender Ŝ, consider the ideal-world sender Ŝ′ that works as follows.
On input (M1, . . . ,MN ), it runs Ŝ(M1, . . . ,MN ). It records each of the random oracle queries performed
by the Ŝ algorithm and responds by providing consistent random values (i.e., if the adversary queries
some value x twice, return the same result on each query). Let (pk , C1, . . . , Cn) be the output of the
sender’s initialization process. At this point, Ŝ′ reviews each of the random oracle queries H(hi) made
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by Ŝ. If it succeeds at parsing hi as (σi, si) such that Vf(pk , σi, si) = 1 and σi ∈ {1, N}, then it sets
M ∗

i ← Ci ⊕H(σi, si). For all 1 ≤ j ≤ N such that M ∗
j has not been set by this process, it chooses a

random value for M ∗
j . It sends (M ∗

1 , . . . ,M ∗
N ) to the trusted party.

To handle the next k interactive queries, Ŝ′ runs the honest receiver algorithm R0
$← RI(pk ,C1, . . . ,Cn).

At each transfer, it runs Ri ← RT(Ri−1, 1), meaning that it simulates an honest receiver that queries
the first message M1 k times. Remember that Ŝ′ is not given the selection algorithm Σ as input, so
it cannot run RT on the real values. If algorithm Ŝ completes the protocol and the output of RT is a
valid signature, then Ŝ′ sends 1 to the trusted party. Otherwise, it sends 0, indicating an abort for
this query. (Note that it is here that we need the selective-failure property of BS . Namely, it implies
that the probability that the user algorithm fails is independent of the message being queried, and
hence is the same for index 1 and the real index that would be generated through Σ.) At the end of
the k-th query, Ŝ outputs a string Sk; the ideal sender Ŝ′ outputs the same string Sk.

Given the simulation that Ŝ′ provides to Ŝ above, one can see that IdealbS′,R′(N, k,M1, . . . ,Mk,Σ) and
RealbS,R

(N, k,M1, . . . ,Mk,Ω) are identically distributed, where Ω is the selection algorithm that always
outputs σi = 1. Suppose we are given an algorithm D that distinguishes outputs of IdealbS′,R′(N, k,

M1, . . . ,Mk,Σ) = RealbS,R
(N, k,M1, . . . ,Mk,Ω) from outputs of RealbS,R

(N, k,M1, . . . ,Mk,Σ). Then
consider the following adversary A against the selective-failure blindness of BS . Algorithm A first
chooses a random bit b′

$← {0, 1} and runs Ŝ to obtain public key pk and ciphertexts C1, . . . ,CN . If
b′ = 0, then A runs Ŝ in interaction with RT on indices generated by Σ; if b′ = 1, it uses all ones as
indices. Let i be the first index σi generated by Σ such that σi 6= 1. (If such index doesn’t exist, then
D is trying to distinguish between two identical distributions, so obviously it has advantage zero.)
Algorithm A outputs pk as the public key and M0 = σi,M1 = 1 as the messages on which it wishes
to be challenged. It simulates the i-th interaction with Ŝ by relaying messages between Ŝ and the
first instantiation of the User algorithm that A is faced with (which implements either User(pk , σi) or
User(pk , 1)). It then continues running Ŝ, simulating interactions as before.

Eventually, Ŝ outputs a string Sk. A runs the distinguisher D on input Sk to obtain a bit bD. Assume
that bD = 0 indicates that D guesses Sk was drawn from RealbS,R

(N, k,M1, . . . ,Mk,Σ), and that
bD = 1 indicating that it was drawn from RealbS,R

(N, k,M1, . . . ,Mk,Ω). If bD = b′ = 0, then algorithm
A outputs bA = 0; if bD = b′ = 1, algorithm A outputs bA = 1; otherwise, A outputs a random bit
bA

$← {0, 1}.

Let b be the hidden bit chosen by the blindness game that A has to guess. It is clear from the
simulation that if b = b′ = 0, then Sk follows the distribution RealbS,R

(N, k,M1, . . . ,Mk,Σ). Likewise,
if b = b′ = 1, then Sk follows RealbS,R

(N, k,M1, . . . ,Mk,Ω). Using a standard probability analysis, one

can see that the advantage of A in breaking the blindness of BS is ε′ = ε/2. The running time t′ of Ŝ′

is at most the running time t of Ŝ plus that of qH + k signature verifications, k executions of RT and
one execution of Σ. The running time t′′ of A is at most the running time tD of D plus the running
time t of Ŝ plus the running time of Σ plus the time required for k executions of RT. The inequalities
in Theorem 3.4 follow.

3.1.1 Instantiations.

Many blind signature schemes exist, but only the schemes of Chaum [Cha88, BNPS03] and Boldyreva [Bol03]
seem to be unique. Both are efficient two-round schemes which result in round-optimal adaptive obliv-
ious transfer protocols.

The instantiation of our generic construction with Chaum’s blind signature scheme coincides with
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the direct OT scheme of Ogata-Kurosawa [OK04]. However, special precautions must be taken to
ensure that Chaum’s scheme is selective-failure blind. For example, the sender must use a prime
exponent e greater than the modulus n [ANN06], or must provide a non-interactive proof that
gcd(e, n) = 1 [CPP06]. Anna Lysyanskaya suggests having the receiver send e to the sender. This
solution is much more efficient than the previous two, but would require re-proving the security of the
OT N

k×1 scheme since it is no longer an instance of our generic construction. In any case, the authors
of [OK04] overlooked this need, which creates the possibility for attacks on the receiver’s security of
their protocol. For example, a cheating sender could choose e = 2 and distinguish between transfers
for σi and σ′i for which H(σi) is a square modulo n and H(σ′i) is not.

When instantiated with Boldyreva’s blind signature scheme [Bol03] based on pairings, our generic
construction coincides with the direct OT scheme of Chu-Tzeng [CT05]. A similar issue concerning
the dishonest-key blindness of the scheme arises here, but was also overlooked. The sender could for
example choose the group to be of non-prime order and break the receiver’s security in a similar way
as demonstrated above for the scheme of [OK04]. One can strengthen Boldyreva’s blind signature
scheme to provide selective-failure blindness by letting the user algorithm check that the group is of
prime order p and that the generator is of full order p.

4 Simulatable Adaptive OT in the Standard Model

4.1 Preliminaries

4.1.1 Computational assumptions.

Our protocol presented in this section requires bilinear groups and associated hardness assumptions.
Let (G1, GT) be two multiplicative groups of prime order p, let G∗

1 = G1 \ {1}, and let g ∈ G∗
1 be a

generator of G1. We assume the existence of an admissible bilinear map e : G1 ×G1 → GT, meaning
that (1) for all a, b ∈ Zp it holds that e(ga, gb) = e(g, g)ab; (2) e(g, g) 6= 1; and (3) the bilinear map is
efficiently computable.

Definition 4.1 [Strong Diffie-Hellman Problem] Let (G1, GT) be a bilinear group with pairing e. The
SDH problem is said to be (t, ε, `)-hard if no algorithm running in time t can, on input (g, gx, . . . , gx`

)
for random g

$← G1 and x
$← Zp, output a pair (g

1
x+c , c) where c ∈ Zp with probability more than ε.

Definition 4.2 [Power Decisional Diffie-Hellman Problem] Let (G1, GT) be a bilinear group pair
with pairing e. The PDDH problem is said to be (t, ε, `)-hard if no algorithm running in time t

can, given as inputs (g, gx, gx2
, . . . , gx`

,H) for random g
$← G, x

$← Zp and H
$← GT, distinguish

T = (Hx,Hx2
, . . . ,Hx`

) from a random vector in G`
t with probability greater than 1/2 + ε/2.

4.1.2 Boneh-Boyen signatures.

We modify the weakly-secure signature scheme of Boneh and Boyen [BB04] as follows. The scheme
uses an admissible bilinear map as defined above. The signer’s secret key is x

$← Zp, the corresponding
public key is y = gx. The signature on a message M is s ← g1/(x+M ); verification is done by checking
that e(s, y · gM ) = e(g, g). This scheme is similar to the Dodis and Yampolskiy verifiable random
function [DY05].

Security under weak chosen-message attack is defined through the following game. The adversary
begins by outputting ` messages M1, . . . ,M`. The challenger generates a fresh key pair and gives the
public key to the adversary, together with signatures s1, . . . , s` on M1, . . . ,M`. The adversary wins if
it succeeds in outputing a valid signature s on a message M 6∈ {M1, . . . ,M`}. The scheme is said to be
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(t, `, ε)-unforgeable under weak chosen-message attack if no adversary running in time t and making
at most ` signature queries has probability at least ε of winning this game. An easy adaptation of
the proof of of [BB04] can be used to show that the above scheme is (t, `, ε)-unforgeable under weak
chosen-message attack if the SDH problem is (t + O(N2t), ε, ` + 1)-hard.

4.1.3 Zero-knowledge proofs and Σ-protocols.

We use definitions from [BG92, CDM00]. A pair of interacting algorithms (P,V) is a proof of knowledge
(PoK) for a relation R = {(α, β)} ⊆ {0, 1}∗ × {0, 1}∗ with knowledge error κ ∈ [0, 1] if (1) for all
(α, β) ∈ R, V(α) accepts a conversation with P(β) with probability 1; and (2) there exists an expected
polynomial-time algorithm E, called the knowledge extractor, such that if a cheating prover P̂ has
probability ε of convincing V to accept α, then E, when given rewindable black-box access to P̂,
outputs a witness β for α with probability ε− κ.

A proof system (P,V) is perfect zero-knowledge if there exists a PPT algorithm Sim, called the
simulator, such that for any polynomial-time cheating verifier V̂ and for any (α, β) ∈ R, the outputs
of V̂(α) after interacting with P(β) and that of Sim

bV(α)(α) are identically distributed.
A Σ-protocol is a proof system (P,V) where the conversation is of the form (a, c, z), where a

and z are are computed by P, and c is a challenge chosen at random by V. The verifier accepts if
φ(α, a, c, z) = 1 for some efficiently computable predicate φ. Given two accepting conversations (a, c, z)
and (a, c′, z′) for c 6= c′, one can efficiently compute a witness β. Moreover, there exists a polynomial-
time simulator Sim that on input α and a random string c outputs an accepting conversation (a, c, z)
for α that is perfectly indistinguishable from a real conversation between P(β) and V(α).

For a relation R = {(α, β)} with Σ-protocol (P,V), the commitment relation R′ = {(α, a), (c, z)}
holds if φ(α, a, c, z) = 1. If both R and R′ have Σ-protocols, then Cramer et al. [CDM00] show how
to construct a four-move perfect zero-knowledge PoK for R with knowledge error κ = 1/|C|, where C
is the space from which the challenge c is drawn.

4.2 The Protocol

Our protocol in the standard model is depicted in Figure 2. All zero-knowledge proofs can be performed
efficiently in four rounds and with O(κ) communication using the transformation of [CDM00]. The
detailed protocols are provided in the full version [CNS07]. We assume that the messages Mi are
elements of the target group GT.2 The protocol is easily seen to be correct by observing that W =
e(h, Aσi)

v, so therefore Bσi/W 1/v = Mσi .
We now provide some intuition into the protocol. Each pair (Ai, Bi) can be seen as an ElGamal

encryption [ElG85] in GT of Mi under public key H. But instead of using random elements from GT

as the first component, our protocol uses verifiably random [DY05] values Ai = g1/(x+i). It is this
verifiability that during the transfer phase allows the sender to check that the receiver is indeed asking
for the decryption key for one particular ciphertext, and not for some combination of ciphertexts.

The relation of this protocol to blind signatures is not as explicit as in our random-oracle con-
struction, but it could still be seen as being underlain by a somewhat “limited” blind signature
scheme. Namely, consider the scheme with public key (g,H, y,A1, . . . , AN ) and corresponding secret
key α = logg h = loge(g,g) H, where the signature of a message M ∈ {1, . . . , N} is given by s = (AM )α.
The signing protocol would be a variation on the transfer phase of our OT scheme where the user is
given W = V α rather than W = e(h, V ). Verification is done by checking that e(s, ygM ) = H. The

2This is a standard assumption we borrow from the literature on Identity-Based Encryption. The target group is
usually a subgroup of a larger prime field. Thus, depending on implementation, it may be necessary to “hash” the data
messages into this subgroup. Alternatively, one can extract a random pad from the element in the target group and use
⊕ to encrypt the message.
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Initialization

SI(M1, . . . ,MN ) : RI(1κ) :

g, h
$← G∗

1 ; H ← e(g, h)
x

$← Zp ; y ← gx ; pk ← (g,H, y)
For i = 1, . . . , N do

Ai ← g1/(x+i)

Bi ← e(h, Ai) ·Mi

Ci ← (Ai, Bi) pk , C1, . . . , CN -

S0 ← (h, pk) PoK{(h) : H = e(g, h)}- R0 ← (pk ,C1, . . . ,CN )

Transfer

ST(Si−1) : RT(Ri−1, σi) :

v
$← Zp ; V ← (Aσi

)v

V�

PoK{(σi, v) : e(V, y) = e(V, g)−σie(g, g)v}�

W ← e(h, V ) W -
PoM {(h) : H = e(g, h) ∧W = e(h, V )}-

Si = Si−1 M ← Bσi
/(W 1/v)

Ri = Ri−1

Figure 2: Our OT N
k×1 protocol in the standard model . We use notation by Camenisch and

Stadler [CS97] for the zero-knowledge protocols. They can all be done efficiently (in four rounds
and O(κ) communication) by using the transformation of [CDM00]. The protocols are given in
detail in Appendix A.

scheme has the obvious disadvantage that the public key is linear in the size of the message space; we
therefore do not further study its properties here.

4.3 Security

4.3.1 Receiver security.

We demonstrate the receiver security of our scheme by proving the stronger property of unconditional
statistical indistinguishability. Briefly, the ideal-world sender can extract h from the proof of knowledge
in the initialization phase, allowing it to decrypt the messages to send to the trusted party. During
the transfer phase, it plays the role of an honest receiver and asks for a randomly selected index. If
the real-world sender succeeds in the final proof of membership (PoM) of the well-formedness of W ,
then the ideal sender sends b = 1 to its trusted-party T to indicate continue.

Notice how the sender’s response W is simultaneously determined by the initialization phase,
unpredictable by the receiver during the transfer phase, but yet verifiable once it has been received
(albeit, via a zero-knowledge proof). Intuitively, these three properties prevent the selective-failure
attack.

Theorem 4.3 The OT N
k×1 protocol in Figure 2 is unconditionally (t, t′, tD, ε)-receiver-secure for all

ε ≥ 1/p, for all tD and for all t′ ≥ 2t+ tE1 + tSim2 + tR, where tE1 , tSim2 and tR are the running times of
the extractor for the first PoK, of the simulator for the second PoK, and the honest receiver algorithm
respectively.
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Proof: We show that for every real-world cheating sender Ŝ there exists an ideal-world cheating
sender Ŝ′ such that no distinguisher D, regardless of its running timetD, has probability more than
ε to distinguish the distributions RealbS,R

(N, k,M1, . . . ,MN ,Σ) and IdealbS′,R′(N, k,M1, . . . ,MN ,Σ).

We do so by considering a sequence of distributions Game-0, . . . ,Game-3 such that for some Ŝ′ that
we construct, Game-0 = RealbS,R

and Game-3 = IdealbS′,R′ , and by demonstrating the statistical
difference in the distribution for each game transition. Below, we use the shorthand notation

Pr [Game-i ] = Pr
[

D(X) = 1 : X
$← Game-i

]
.

Game-0 : This is the distribution corresponding to RealbS,R
, i.e., the game where the cheating sender

Ŝ is run against an honest receiver R with selection strategy Σ. Obviously,

Pr [Game-0 ] = Pr
[

D(X) = 1 : X
$← RealbS,R

]
.

Game-1 : In this game the extractor E1 for the first proof of knowledge is used to extract from Ŝ
the element h such that e(g, h) = H. If the extractor fails, then the output of Game-1 is ⊥;
otherwise, the execution of Ŝ continues as in the previous game, interacting with R(Σ). The
difference between the two output distributions is given by the knowledge error of the PoK, i.e.,

Pr [Game-1 ]− Pr [Game-0 ] ≤ 1
p

.

Game-2 : This game is identical to the previous one, except that during the transfer phase the value
V sent by the receiver is replaced by picking a random v′ and sending V ′ ← Av

1. The witness
(v′, 1) is used during the second PoK. Since V and V ′ are both uniformly distributed over G1,
and by the perfect witness-indistinguishability of the PoK (implied by the perfect zero-knowledge
property), we have that

Pr [Game-2 ] = Pr [Game-1 ].

Game-3 : In this game, we introduce an ideal-world sender Ŝ′ which incorporates the steps from
the previous game. Algorithm Ŝ′ uses E1 to extract h from Ŝ, decrypts M ∗

i as Bi/e(h, Ai) for
i = 1, . . . , N and submits M ∗

1 , . . . ,M ∗
N to the trusted party T. As in Game-2, during the

transfer phase, Ŝ′ feeds V ′ $← Av′
1 to Ŝ and uses (v′, 1) as a witness in the PoK. It plays the

role of the verifier in the final PoM of W . If Ŝ convinces Ŝ′ that W is correctly formed, then Ŝ′

sends 1 to the trusted party, otherwise it sends 0. When Ŝ outputs its final state Sk, Ŝ′ outputs
Sk as well.

One can syntactically see that

Pr [Game-3 ] = Pr [Game-2 ] = Pr
[

D(X) = 1 : X
$← IdealbS′,R′

]
.

Summing up, we have that the advantage ε of the distinguisher D is given by

Pr
[

D(X) = 1 : X
$← IdealbS′,R′

]
− Pr

[
D(X) = 1 : X

$← RealbS,R

]
≤ 1

p
.
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4.3.2 Sender security.

The following theorem states the sender-security of our second construction.

Theorem 4.4 If the SDH problem is (tSt, εSt, N + 1)-hard and the decisional SBDHI problem is
(tSi, εSi, N + 1)-hard, then the OT N

k×1 protocol depicted in Figure 2 is (t, t′, tD, ε)-sender-secure for all
ε ≥ εSt + εSi + k

p , all t ≤ tSt − k · tE2 −O(N2t), all tD ≤ tSi −O(N2)texp − tSim1 − k · tE2 − k · tSim3 , and
all t′ ≥ t + O(N2)texp + tSim1 + k · tE2 + k · tSim3 .

Proof: Given a real cheating receiver R̂, we construct an ideal-world cheating receiver R̂′ such
that no algorithm D can distinguish between the distributions Real

S,bR(N, k,M1, . . . ,MN ,Σ) and
Ideal

S′,bR′(N, k,M1, . . . ,MN ,Σ). We again do so by considering a sequence of hybrid distributions
and investigate the differences between successive ones.

Game-0 : This is the distribution corresponding to R̂ being run against the honest sender S(M1, . . . ,MN ).
Obviously, we have that

Pr [Game-0 ] = Pr
[

D(X) = 1 : X
$← Real

S,bR
]

.

Game-1 : This game differs from the previous one in that at each transfer the extractor E2 of the
second PoK is used to extract from R̂ the witness (σi, v). If the extraction fails, Game-1
outputs ⊥. Because the PoK is perfect zero-knowledge, the difference on the distribution with
the previous game is statistical (i.e., independent of the distinguisher’s running time) and given
by k times the knowledge error, or

Pr [Game-1 ]− Pr [Game-0 ] ≤ k

p
.

Note that the time required to execute these k extractions is k ·tE2 , because the transfer protocols
can only run sequentially, rather than concurrently. One would have to resort to concurrent zero-
knowledge protocols [DNS04] to remove this restriction.

Game-2 : This game is identical to the previous one, except that Game-2 returns ⊥ if the extracted
value σi 6∈ {1, . . . , N} during any of the transfers. One can see that in this case s = V 1/v is a
forged Boneh-Boyen signature on message σi. The difference between Game-1 and Game-2 is
bounded by the following claim, which we prove below:

Claim 4.5 [1] If the SDH problem is (tSt, εSt, N)-hard and tSt ≥ t + k · tE2 + O(N2t), then

Pr [Game-2 ]− Pr [Game-1 ] ≤ εSt .

Game-3 : In this game the PoK of h in the initialization phase is replaced with a simulated proof
using Sim1, the value W returned in each transfer phase is computed as W ← (Bσi/Mσi)

v, and
the final PoM in the transfer phase is replaced by a simulated proof using Sim3. Note that
now the simulation of the transfer phase no longer requires knowledge of h. However, all of the
simulated proofs are proofs of true statements and the change in the computation of W is purely
conceptional. Thus by the perfect zero-knowledge property, we have that

Pr [Game-3 ] = Pr [Game-2 ] .
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Game-4 : Now the values B1, . . . , BN sent to R̂ in the initialization phase are replaced with random
elements from GT. Now at this point, the second proof in the previous game is a simulated
proof of a false statement. Intuitively, if these changes enable a distinguisher D to separate
the experiments, then one can solve an instance of the SBDHI problem. This is caputed in the
following claim:

Claim 4.6 [2] If the SBDHI problem is (tSi, εSi, N + 1)-hard and tD ≤ tSi−O(N2)texp− tSim1 −
k · tE2 − k · tSim3 then

Pr [Game-4 ]− Pr [Game-3 ] ≤ εSi .

The ideal-world receiver R̂′ can be defined as follows. It performs all of the changes to the experiments
described in Game-4 except that at the time of transfer, after having extracted the value of σi from
R̂, it queries the trusted party T on index σi to obtain message Mσi . It then uses this message to
compute W . Syntactically, we have that

Pr
[

D(X) = 1 : X
$← Ideal

S′,bR′

]
= Pr [Game-4 ] .

Summing up the above equations and inequalities yields that

Pr
[

D(X) = 1 : X
$← Ideal

S′,bR′

]
− Pr

[
D(X) = 1 : X

$← Real
S,bR

]
≤ εSt + εSi +

k

p
.

The running time of R̂′ is t′ = t + O(N2)texp + tSim1 + k · tE2 + k · tSim3 .

It remains to prove the claims used in the proof above.

Proof of Claim (1): We prove the claim by constructing an adversary A that (t + k · tE2 , )-breaks
the unforgeability under weak chosen-message attack of the modified Boneh-Boyen signature scheme .
By the security proof of [BB04], this directly gives rise to a (t+k · tE2 +O(N2t), εSt) adversary against
the (N + 1)-SDH problem.

Given a cheating receiver R̂ for that distinguishes between Game-1 and Game-2 with advantage εSt,
consider the forger A that outputs messages M1 = 1, . . . ,MN = N , and on input a public key y and
signatures A1, . . . , AN runs the honest sender algorithm using these values for h and A1, . . . , AN . At
each transfer it uses E2 to extract from R̂ values (σi, v) such that e(V, y) = e(V, g)−σie(g, g)v. (This
extraction is guaranteed to succeed since we already eliminated failed extractions in the transition
from Game-0 to Game-1.) When σi 6∈ {1, . . . , N} then A outputs s ← V 1/v as its forgery on
message M = σi. The forger A wins whenever it extracts a value σi 6∈ {1, . . . , N} from Ŝ, meaning
with probability εSt. The running time of A is at most t + k · tE2 .

Proof of Claim (2): Given an algorithm D that has probability εSi in distinguishing Game-2
and Game-3, consider the following algorithm A for the PDDH problem for ` = N + 1. On input
(u, ux, . . . , uxN+1

, V ) and a vector (T1, . . . , TN+1), A proceeds as follows. For ease of notation, let
T0 = V . Let f be the polynomial defined as f(X) =

∏N
i=1(X + i) =

∑N
i=0 ciX

i. Then A sets
g ← uf(x) =

∏N
i=0(u

xi
)ci and y ← gx =

∏N
i=0(u

xi+1
)ci . If fi is the polynomial defined by fi(X) =

f(X)/(X+i) =
∑N−1

j=0 ci,jX
j , then A can also compute the values Ai = g1/(x+i) as Ai ←

∏N−1
j=0 (uxj

)ci,j .
It then sets H ← V f(x) =

∏N
i=0 T ci

i , and computes Bi = H1/(x+i) as Bi ←
∏N−1

j=0 T
ci,j

i , and continues
the simulation of R̂’s environment as in Game-3 and Game-4, i.e., at each transfer extracting (σi, v),
computing W ← (Bσi/Mσi) and simulating the PoM. When R̂ outputs its final state Rk, algorithm A

runs b
$← D(ε,Rk) and outputs b.
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In the case that Ti = V xi
one can see that the environment that A created for Ŝ is exactly that

of Game-3. In the case that T1, . . . , TN are random elements of GT, then one can easily see that
this environment is exactly that of Game-4. Therefore, if D has advantage εSi in distinguishing the
outputs of Game-3 and Game-4, then A has advantage εSi in solving the (N + 1)-PDDH problem.
The running time of A is tA = tD + O(N2)texp + tSim1 + k · tE2 + k · tSim3 .
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A Proof of Knowledge Protocols

Cramer, Damg̊aard, and MacKenzie [CDM00] present a framework for constructing four-round perfect
zero-knowledge proofs of knowledge for a special class of languages that have efficient Σ-protocols—
which in particular, includes the three discrete-log-based languages used in our protocol. Two remark-
able properties of their construction are that it is unconditional, i.e., the protocol does not require
any additional computational assumptions, and that the extraction error is exponentially small.

The CDM construction for a relationship R = {(α, β)} uses both a sigma protocol for R as well as
a sigma protocol for the commitment relationship R′ = {((α, a), (c, z))}. Informally, this commitment
relationship includes all pairs (α, a) for which there exists a witness (c, z) such that (a, c, z) is an
accepting sigma-protocol transcript on the instance α. (It is called the commitment relationship since
(α, a) can be viewed as a commitment to c when the committer does not know β.) Given a proof
system (P,V) (and a corresponding simulator Sim) for R and a protocol (P′,V′) (and a corresponding
simulator Sim′) for R′, the CDM construction works as follows: in the first phase, the verifier commits
to a challenge e by running the simulator Sim(α, e) to generate a pair (a, e, z) and sending (α, a) to the
prover. The verifier then runs the sigma protocol P′((α, a), (e, z)) with the prover who runs V′(α, a)
in order to prove knowledge of a witness of instance (α, a) for the R′ relation. Then the prover uses
the standard “OR-Σ-protocol” POR to prove that it either knows a witness β for α in R, or a witness
(e, z) for (α, a) in R′. The special relationship between R and R′ enables them to prove all of the
incredible properties of this protocol. By merging rounds, this construction can be shortened to four
rounds.

For the special case of knowledge of a discrete logarithm, Cramer, Damg̊aard, and MacKenzie offer
a specially optimized proof which we include below for completeness. We then give the Σ-protocols
for R and R′ for the two other languages for which we need proofs of knowledge.

A.1 Proof of Knowledge of a Pairing Preimage

Rather than giving the full zero-knowledge protocol, we give the Σ-protocols for the relation R and
its commitment relation R′. The CDM construction can be applied to turn these components into a
perfectly zero-knowledge proof system.

Σ-protocol for PoK{(h) : H = e(g, h)}

Common Input: Group parameters for G1 = 〈g〉 and GT, instance H ∈ GT.

Prover’s Input: h ∈ G1 s.t. H = e(g, h).

P
a−→ V : Prover picks r

$← G1 and sends a = e(g, r).
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P
c←− V : Verifier sends a random challenge c

$← Zp.

P
z−→ V : Prover sends z ← r · h−c.

V : Verifier checks that a
?= e(g, z) ·Hc.

Σ-protocol for Commitment Relationship

Common Input: Group parameters for G1 = 〈g〉 and GT, instance (H, a) ∈ G2
T.

Prover’s Input: (c, z) ∈ Zp ×G1 such that a = e(g, z) ·Hc.

P
a′−→ V : Prover picks r1

$← Zp, r2
$← G1 and sends a′ ← Hr1 · e(g, r2).

P
c′←− V : Verifier sends a random challenge c′

$← Zp.

P
z′1,z′2−→ V : Prover sends z′1 ← r1 − cc′ mod p, z′2 ← r2 · zc′ mod p.

V : Verifier checks that a′ = Hz′1 · e(g, z′2)a
c′ .

A.2 Components for the Second Proof of Knowledge

Σ-protocol for PoK{(σ, v) : e(V, y) = e(V, g)−σe(g, g)v}

Common Input: Group parameters for G1 = 〈g〉 and GT, instance (V, y) ∈ G2
1.

Prover’s Input: σ ∈ {1, . . . , N}, v ∈ Zp s.t. e(V, y) = e(V, g)−σe(g, g)v.

P
a−→ V : Prover picks r1, r2

$← Zp and sends a← e(V, g)−r1e(g, g)r2 .

P
c←− V : Verifier sends a random challenge c

$← Zp.

P
z1,z2−→ V : Prover sends z1 ← r1 − σc mod p and z2 ← r2 − vc mod p.

V : Verifier checks that
a

?= e(V, y)c · e(V, g)−z1 · e(g, g)z2 . (1)

Σ-protocol for Commitment Relationship

Common Input: Group parameters for G1 = 〈g〉 and GT, instance (V, y, a) ∈ G2
1 ×GT.

Prover’s Input: (c, (z1, z2)) ∈ Zp × Z2
p such that Equation (1) holds.

P
a′−→ V : Prover picks r1, r2, r3

$← Zp and sends a′ = e(V, y)r1 · e(V, g)−r2 · e(g, g)r3 .

P
c′←− V : Verifier sends a random challenge c′

$← Zp.

P
z′1,z′2,z′3−→ V : Prover sends z′1 ← r1 − cc′ mod p, z′2 ← r2 − z1c

′ mod p and z′3 ← r3 − z2c
′ mod p.

V : Verifier checks that a′
?= ac′ · e(V, y)z′1 · e(V, g)−z′2 · e(g, g)z′3 .
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A.3 Components for the Third Proof of Membership

Although the third proof is a proof of membership, we use the same construction for the (stronger)
proof of knowledge.

Σ-protocol for PoM{(h) : H = e(g, h) ∧W = e(h, V )}

Common Input: Group parameters for G1 = 〈g〉 and GT, instance (V,H, W ) ∈ G1 ×G2
T.

Prover’s Input: h ∈ G1 such that H = e(g, h) ∧W = e(h, V ).

P
a1,a2−→ V : Prover chooses r

$← G1 and sends a1 ← e(g, r) and a2 ← e(r, V ).

P
c←− V : Verifier sends a random challenge c

$← Zp.

P
z−→ V : Prover sends z ← r · h−c.

V : Verifier checks a1
?= e(g, z) ·Hc and

a2
?= e(z, V ) ·W c . (2)

Sigma protocol for Commitment Relationship

Common Input: Group parameters for G1 = 〈g〉 and GT, instance (V,H, W, a1, a2) ∈ G1 ×G4
T,

Prover’s Input: (c, z) ∈ Zp ×G1 such that Equation (2) holds.

P
a′1,a′2−→ V : Prover picks r1

$← Zp and r2
$← G1, and sends a′1 ← e(g, r2) ·Hr1 and a′2 ← e(r2, V ) ·W r1 .

P
c′←− V : Verifier sends a random challenge c′

$← Zp.

P
z′1,z′2−→ V : Prover sends z′1 ← r1 − cc′ mod p and z′2 ← r2 · z−c′ .

V : Verifier checks that a′1
?= e(g, z′2) ·Hz′1 · ac′

1 and a′2
?= e(z′2, V ) ·Hz′1 · ac′

2 .

B PDDH in Generic Groups

We build confidence in our new PDDH assumption by showing its hardness in generic bilinear
groups [Sho97]. In fact, we give a computational lower bound for a new problem that we call the
Vector General Diffie-Hellman Exponent (VGDHE) problem, and that contains the PDDH problem
as a special case. The VGDHE problem is an extension of the General Diffie-Hellman Exponent prob-
lem introduced by Boneh, Boyen and Goh [BBG05] where the adversary has to distinguish a vector
of group elements from random, rather than a single element. Our proof in the generic group model
is very similar to that of [BBG05], but is included here for completeness.

Let p be the prime group order and let n ∈ N. Let P,Q, F ⊂ Zp[X1, . . . , Xn] be sets of poly-
nomials in variables X1, . . . , Xn. For g ∈ G1 and x1, . . . , xn ∈ Zp let gP (x1,...,xn) denote the vector(
gp1(x1,...,xn), . . . , gp|P |(x1,...,xn)

)
∈ G|P |

1 where P = {p1, . . . , p|P |}. The vectors e(g, g)Q(x1,...,xn) and

e(g, g)F (x1,...,xn) are defined analogously. Algorithm A has advantage ε in solving the (P,Q, F )-VGDHE
problem in (G1, GT) if∣∣∣ Pr

[
A

(
gP (x1,...,xn) , e(g, g)Q(x1,...,xn) , e(g, g)F (x1,...,xn) , T

)
= 1

]
− Pr

[
A

(
gP (x1,...,xn) , e(g, g)Q(x1,...,xn) , T , e(g, g)F (x1,...,xn)

)
= 1

]∣∣∣ > ε ,
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where the probability is taken over the random choices of g
$← G1, x1, . . . , xn

$← Zp, and T
$← G|F |

T .
We extend the independence definition of [BBG05] to the case that |F | > 1.

Definition B.1 Let P,Q, F ⊂ Zp[X1, . . . , Xn] be sets of polynomials such that P = {p1, . . . , p|P |},
Q = {q1, . . . , q|Q|}, F = {f1, . . . , f|F |}. We say that F is independent of P,Q if there does not exist

a non-trivial (i.e., not all zeroes) assignment for the coefficients {ai,j}|P |i,j=1, {bi}|Q|i=1, {ci}|F |i=1 ∈ Zp such
that

|P |∑
i=1

ai,jpipj +
|Q|∑
i=1

biqi +
|F |∑
i=1

cifi = 0 mod p .

The degree of a term cXd1
1 · · ·Xdn

n is d = d1 + . . . + dn; the degree of a polynomial p ∈ Zp[X1, . . . , Xn]
is the maximum of the degrees of all its terms; and the degree deg(P ) of a set of polynomials P ⊂
Zp[X1, . . . , Xn] is the maximum of the degrees of all its elements.

In the generic group model, an adversary A sees group elements only through an encoding as unique
random strings. Let χ : Zp → {0, 1}` be a function that maps x ∈ Zp to the string representation χ(x)
of gx ∈ G1. Likewise, let ξ : Zp → {0, 1}` be such that ξ(x) is the string representation of e(g, g)x.
The adversary has access to oracles for computing the group operations in G1 and GT, and for the
pairing e : G1 ×G1 → GT.

Theorem B.2 Let P,Q, F ⊂ Zp[X1, . . . , Xn] as defined above with dP = deg(P ), dQ = deg(Q), and
dF = deg(F ). If A makes a total of q queries to its oracles, then its advantage in solving the VGDHE
problem is at most

ε ≤ (|P |+ |Q|+ 2|F |+ q)2 · d
p

,

where d = max(2dP , dQ, dF , 1).

Proof: Consider the algorithm B that provides an execution environment for A as follows. It maintains
two lists of pairs

L1 = {(pi, χi) : i = 1, . . . , l1} , LT = {(qi, ξi) : i = 1, . . . , lT} ,

Initially, L1 contains |P | pairs (pi, χi) where {p1, . . . , p|P |} = P and χ1, . . . , χ|P | are unique random
`-bit strings. The list LT contains polynomials not only in the n variables X1, . . . , Xn, but also
in 2|F | additional variables Y0,1, . . . , Y0,|F |, Y1,1, . . . , Y1,|F |. Initially it contains the |Q| + 2|F | pairs
(qi, ξi) where {q1, . . . , q|Q|} = Q, where q|Q|+i = Y0,i for 1 ≤ i ≤ |F |, and where q|Q|+|F |+i = Y1,i for
1 ≤ i ≤ |F |. Here also, the ξi are unique random `-bit strings. At any point in the game we will have
that l1 + lT ≤ |P |+ |Q|+ 2|F |+ q, where q is the number of A’s oracle queries.

We assume that A only queries its oracles with element representations that were either part of its
input or that it obtained through previous oracle queries. This is reasonable because its probability of
“predicting” an element encoding can be made arbitrarily small by increasing `. Algorithm B responds
to A’s oracle queries as follows.

Multiplication in G1. On query (χi, χj), B looks up the pairs (pi, χi), (pj , χj) ∈ L1. If there exists
a pair (pk, χk) ∈ L1 such that pi + pj = pk mod p, then B returns χk. Otherwise, it increases l1

and adds a pair (pl1 , χl1) to L1 where pl1 = pi + pj mod p and χl1
$← {0, 1}` \ {χ1, . . . , χl1−1}.

Multiplication in GT. These queries are treated analogously, but using list LT instead of L1.
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Pairing. On query (χi, χj), B looks up the pairs (pi, χi), (pj , χj) ∈ L1. If there exists a pair (qk, ξk) ∈
LT such that pi · pj = qk mod p, then B returns ξk. Otherwise, it increases lT and adds a pair
(qlT , ξlT) to LT where qlT = pi · pj mod p and ξlT

$← {0, 1}` \ {ξ1, . . . , ξlT−1}.

After q such queries, A outputs a bit b′. Now B chooses b
$← {0, 1} and sets Y1−b,i ← fi(X1, . . . , Xn) for

1 ≤ i ≤ |F |. Let bad1 be the event that after this assignment there are distinct pairs (pi∗ , χi∗), (pj∗ , χj∗) ∈
L1 such that pi∗ = pj∗ mod p, or distinct pairs (qi∗ , ξi∗), (qj∗ , ξj∗) ∈ LT such that qi∗ = qj∗ mod p.
The first is clearly impossible because of the way B handles multiplication queries in G1 and because
pi∗ , pj∗ do not contain any terms in Yi,j . The second also turns out to be impossible, but this requires
a bit more explanation. From the way that B handles pairing queries and multiplication queries in
GT one can see that qi∗ − qj∗ can be written as

|P |∑
i,j=1

ai,jpi,j +
|Q|∑
i=1

biqi +
|F |∑
i=1

cifi +
|F |∑
i=1

diYb,i

for some constants ai,j , bi, ci, di. For this polynomial to be identically zero, it has to hold that

|P |∑
i,j=1

ai,jpipj +
|Q|∑
i=1

biqi +
|F |∑
i=1

cifi = 0 mod p

because neither of {pi}|P |i=1, {qi}|Q|i=1, or {fi}|F |i=1 has terms in Yb,j . This however contradicts the inde-
pendence of F of P,Q.

Next, B chooses x1, . . . , xn, yb,1, . . . , yb,|F |
$← Zp. Let bad2 denote the event that this choice causes at

least one “collision” in L1 or LT, meaning that

pi∗(x1, . . . , xn)− pj∗(x1, . . . , xn) = 0 mod p (3)

for some 1 ≤ i∗ < j∗ ≤ l1, or that

qi∗(x1, . . . , xn, yb,1, . . . , yb,|F |)− qj∗(x1, . . . , xn, yb,1, . . . , yb,|F |) = 0 mod p (4)

for some 1 ≤ i∗ < j∗ ≤ lT. Here, we rewrote equations qi as polynomials in X1, . . . , Xn, Yb,1, . . . , Yb,|F |
after the assignment of Y1−b,i ← fi(X1, . . . , Xn). If bad2 occurs, then B’s simulation of A’s environment
is incorrect, because it returned two different encodings χi∗ , χj∗ (or ξi∗ , ξj∗) for the same element. We
therefore have to bound the probability that bad2 occurs.

We already argued that neither of Equations (3) or (4) is the zero polynomial, so the probability of
hitting a root when choosing a random assignment is bounded from above by the Schwartz-Zippel
theorem [Sch80] by the degree of the polynomial divided by p. For Equation (3) the degree is at most
dP , while for Equation (4) it is at most d = max(2dP , dQ, dF , 1), so the probability of hitting a root
for any of the equations is at most

Pr [bad2 ] ≤
(

l1
2

)
dP

p
+

(
lT
2

)
d

p

≤ (|P |+ |Q|+ 2|F |+ q)2 · d
2p

.

Above, we used the facts that dP ≤ d, that l1 + lT ≤ |P |+ |Q|+ 2|F |+ q, that
(
a+b
2

)
≤

(
a
2

)
+

(
b
2

)
, and

that
(
a
2

)
≤ a2

2 .
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If event bad2 does not occur, then B’s simulation of A’s environment is perfect. It is clear that in this
case the probability that b′ = b is 1/2, since b was chosen only after A output b′. We therefore have
that

Pr
[
b′ = 1 : b = 1

]
= Pr

[
b′ = 1 : b = 1 ∧ ¬bad2

]
· Pr [¬bad2 ]

+ Pr
[
b′ = 1 : b = 1 ∧ bad2

]
· Pr [bad2 ]

≤ Pr
[
b′ = 1 : b = 1 ∧ ¬bad2

]
+ Pr [bad2 ]

≤ 1
2

+
(|P |+ |Q|+ 2|F |+ q)2 · d

2p
.

Likewise, we have that

Pr
[
b′ = 1 : b = 0

]
= 1− Pr

[
b′ = 0 : b = 0

]
≥ 1

2
− (|P |+ |Q|+ 2|F |+ q)2 · d

2p
,

so the advantage of A is bounded by

∣∣Pr
[
b′ = 1 : b = 1

]
− Pr

[
b′ = 1 : b = 0

]∣∣ ≤ (|P |+ |Q|+ 2|F |+ q)2 · d
p

from which the theorem follows.
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