
Collusion-Free Protocols

Matt Lepinksi∗
CSAIL, MIT

lepinski@csail.mit.edu

Silvio Micali
CSAIL, MIT

silvio@csail.mit.edu

mK X

abhi shelat
CSAIL, MIT

abhi@csail.mit.edu

ABSTRACT
Secure protocols attempt to minimize the injuries to pri-
vacy and correctness inflicted by malicious participants who
collude during run-time. They do not, however, prevent ma-
licious parties from colluding and coordinating their actions
in the first place!

Eliminating such collusion of malicious parties during the
execution of a protocol is an important and exciting direc-
tion for research in Cryptography. We contribute the first
general result in this direction:

(1) We provide a rigorous definition of what a collusion-
free protocol is; and

(2) We prove that, under standard physical and computa-
tional assumptions —i.e., plain envelopes and trapdoor
permutations— collusion-free protocols exist for all fi-
nite protocol tasks with publicly observable actions.

(Note that such tasks are allowed to have secret global
state, and thus include Poker, Bridge, and other such
games.)

Our solution is tight in the sense that, for a collusion-free
protocol to exist, each of (a) the finiteness of the game of
interest, (b) the public observability of its actions, and (c)
the use of some type of physically private channel is provably
essential.

Categories and Subject Descriptors: F.1.2 [Modes of
Computation]: Interactive and Reactive Computation

General Terms: Security, Theory

Keywords: Secure Function Evaluation, Steganography

1. INTRODUCTION
Consider an ideal implementation of a multi-player game

as one in which an external trusted party handles all of the
crucial details of the game’s execution. The goal of secure

∗This material is based upon work supported under an NSF
Graduate Research Fellowship.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
STOC’05,May 22-24, 2005, Baltimore, Maryland, USA.
Copyright 2005 ACM 1-58113-960-8/05/0005 ...$5.00.

multi-party computation [11] (SMC, for short) is to provide a
real implementation of the game via a communication proto-
col which does not rely on a trusted party. Specifically, SMC
guarantees that even if a proper subset of the players col-
lude and deviate from their prescribed protocol instructions
in an arbitrary and coordinated manner during an execu-
tion, the real implementation unfolds with the same privacy
and correctness properties as the ideal implementation.

SMC has been extensively investigated and improved; in
particular, by (a) solely relying on private channels [2, 7] in
place of computational assumptions, (b) tolerating the dy-
namic corruption of players [6], and (c) guaranteeing its safe
use as a subroutine within arbitrary and larger SMC proto-
cols [9, 5]. However, no prior SMC protocol could prevent
malicious players from successfully coordinating their ac-
tions during execution, because all prior work assumes that
players have access to side channels during an execution.
Under this assumption, bad players can coordinate their ac-
tions in the ideal setting, and thus bad players retain this
collusion power in the real setting.

In many games, however, a colluding set of just two play-
ers using side channels would be disastrous. Take poker,
for example. Two players who secretly share information
about their hands during the game have a significant —
and illegal!— advantage. In 1985, Crépeau [8] introduced
techniques for limiting the power of a coalition of bad play-
ers in Mental Poker [17], and raised the important question
of whether this power could be eliminated altogether. His
question has remained unanswered until now.

We provide a positive solution to his open problem by (1)
formalizing what it means to make a coalition as powerless
as possible in a SMC protocol, and (2) achieving such se-
curity, under standard computational and physical assump-
tions, not only for poker, but for any finite game with pub-
licly observable actions —i.e., games in which each player’s
actions are publicly announced to all other players.

The Heart of the Problem: Steganography
A coalition of bad players arises only if its members coordi-
nate their actions by communicating with each other (else,
we would already be facing a set of independent bad play-
ers). Therefore, to prevent a coalition from arising, honest
players in a collusion-free protocol should abort an execution
in which they detect any extra (i.e., non protocol-specified)
communication, since its very presence indicates that bad
players are at work. Right away, this implies that private
channels cannot be the sole means of communication during
a collusion-free protocol: they would automatically make
any communication among bad players undetectable. In-
deed, when constructing our collusion-free protocols, we de-

mand that, at least during critical portions, all communica-
tion is via broadcast only. But the use of broadcasting is not
sufficient. Bad players may subliminally use the broadcast
messages within the protocol to secretly coordinate them-
selves. We view it as a high responsibility of a protocol
designer to guarantee that this does not happen, i.e., that
the protocol itself cannot be used to provide any additional
power to a coalition.

The heart of the problem in this context becomes steganog-
raphy, which is the ability to convey a hidden message via a
public and apparently innocuous one. (For instance, a pho-
tographer in a censored country may use the photograph of
a middle-aged man to secretly transmit the bit 0, if the 30th
hair from the left is white, and 1 otherwise.) Steganography
is a formidable problem in our context because

1. Steganographic communication is provably impossible
to detect whenever there is a minimum amount of en-
tropy (as shown in [4, 16, 14, 1]); and

2. Any secure protocol must have a lot of entropy (as
shown by [12] even in the case of simple encryption).

Fortunately, we shall prove that reconciling these two truths
is paradoxical, but not impossible. That is, for a broad class
of games, while the presence of steganographic communica-
tion is impossible to detect, its presence is possible to prevent.

Remark. Our work shuts down a main avenue of sublimi-
nal communication: that which is introduced by the proto-
col itself. Other physical avenues for such communication,
however, might still be open to adversaries who wish to co-
ordinate themselves. (E.g., they may signal each other by
precisely timing the sending of their protocol messages, by
winking, by coughing, etc.) Shutting down these physical
avenues as well will not be easy. Nonetheless, our results
represent a significant paradigm shift concerning the respon-
sibility for preventing cheating. In the past, colluding play-
ers could have simply used the protocol itself. Now they
must use external means.

Collusion-Free Protocols
In this extended abstract, we examine collusion-free proto-
cols in the static, stand-alone model. Informally, this means
that we focus on a single execution of a game where the set
of bad players is fixed in advance, only one player is active
at any given time, and any player may abort the game. We
do not place any restriction on the number of bad players,
and thus do not consider issues of “fairness.”

To define collusion-free protocols, we embrace the tradi-
tional Ideal-Real paradigm introduced in [11]. We refer to
the abstract specification of a protocol as a game G, and
then consider the ideal and real settings as two different
types of implementations of G. For instance, for the first
stage of poker (i.e., the deal stage), the game G specifies
that each player privately learns a random and independent
subset of 5 cards, subject only to the constraint that the
subsets be disjoint; the ideal implementation consists of a
trusted dealer choosing a permutation of the 52 cards, and
privately handing the first five to player 1, the second five
to player 2, and so on; and the real implementation is a
protocol for dealing cards.

Ideal Implementation. Essentially, this is a trusted-party
implementation of a game G, as in traditional SMC defini-
tions, with the caveat that all extra communication channels
are removed.

For clarity, we refer to a player in the ideal implementa-
tion as a human player. Such a player communicates with

the trusted party in a private and specific manner. In sim-
ple terms (see Section 2 for more details), when it is his
turn to play, a human player can only send an abort sig-
nal, or his chosen action; and, at the end of a player’s turn,
he can only receive either the signal “game aborted” or his
own partial information about the game’s global state. The
trusted party privately receives a player’s action, properly
updates G’s global state, and returns to every player his
proper partial information about the new global state. This
traditional mechanics capture the best possible correctness
and privacy for G. Our only addition to the above mechan-
ics is that each human player is confined to a “Faraday cage”
from which he can only communicate with the trusted party.
The absence of any extra, player-to-player channels captures
our new desideratum that each player must act as indepen-
dently as possible. Our modification to the ideal setting is
thus extremely simple —the real difficulty will lie in imple-
menting it! To this end, however, we must first understand
the implications of our modification and explain what “as
independently as possible” means.

Though the ideal implementation forces all communica-
tion to occur —as sketched above— via the trusted party,
two bad players, i and j, still possess some game-intrinsic
ability to communicate (and indeed secretly communicate!)
with one another. In fact, by choosing an action when it
is his turn, i affects the global state of G, and the proper
partial information about the new state that will be pri-
vately delivered to j. Thus, though the new state is not
totally known or controlled, it may still be possible for i to
achieve some level of communication with j during an ex-
ecution. The ideal implementation does not — and should
not — prevent this game intrinsic communication. It does,
however, prevent any additional communication during an
execution!

Incidentally, bad players may freely talk before and after
executing with the trusted party.1 Thus, even in an ideal
execution, an honest player should accept that bad players
may

1. coordinate their strategies beforehand, in an attempt
to “tilt” the game to their favor, and

2. compare notes afterwards, in an attempt to gain some
knowledge about a honest player’s adopted strategy.

Real Implementation. Essentially, this is an implemen-
tation of a game G via a protocol P , as in traditional SMC
definitions, again with the caveat that all extra communica-
tion channels are removed.

In addition, the real implementation preserves the “reac-
tive nature” of game playing.2 That is, a real player i has
two distinct components: a human player, Hi, and an inter-
active Turing machine, Ti, specified by P . Human player Hi

1No protocol can prevent what may happen outside the pro-
tocol, and the ideal implementation should not promise what
cannot be delivered! Accordingly, players cannot be confined
to Faraday cages for ever! However, it is the protocol de-
signer’s responsibility to ensure that bad players cannot use
post-game communication to disrupt the protocol’s privacy
guarantee in any way.
2Collusion-free protocols would be trivial in a model in
which players commit to their strategy for G and then run a
secure function evaluation on these commitments. Besides
excising the joy from game-play, this approach is infeasible
because writing down complete strategies for games such as
Poker requires more symbols than elementary particles in
the universe. Moreover, in many natural models “players
may be able to play the game but not be able to compute
their own description.”

acts as in the ideal implementation: he chooses actions in
G and receives partial information about G’s current global
state. Machine Ti acts as Hi’s interpreter: essentially, it
transforms an action of Hi into a protocol message, pro-
cesses “the message traffic,” and presents Hi with proper
partial information. In between Hi’s actions, therefore, Ti

is busy using P ’s specified channels (e.g., by sending en-
crypted messages, performing zero-knowledge proofs, etc.)
so as to simulate, together with the other machines Tj , the
correct evolution of G’s global state.

As mentioned above, our only modification to this tradi-
tional mechanics is that at any time, the only channel avail-
able to a player (whether good or bad) is the one specified
by P at that time. The absence of any extra communica-
tion channels physically matches the situation of the ideal
implementation.

Collusion-free Implementation. Essentially, this is a real
implementation of G that “tightly simulates” the ideal one.

Easy to describe informally, a proper formal definition of
collusion-free protocols is quite elusive, even assuming famil-
iarity with the usual subtleties of secure computation. Per-
sonally, we regard the very definition of collusion-freeness
as a primary contribution of this paper, in part because
our new conceptual tools also promise to be useful in other
security settings. For instance, game theory models play-
ers as selfish but independent agents, and traditionally an-
alyzes only one player “going bad” at time. Perhaps the
notion of collusion-free security can help bridge the gap
between game-theoretic models and more realistic settings
with multiple-player deviations.

At the risk of stating the obvious, let us emphasize that
collusion-free protocols do not (and indeed cannot) prevent
players from acting maliciously. Rather, they guarantee that
each malicious player, if any, acts as independently as possi-
ble. (In a sense, they “divide and conquer ” the bad players,
but do not eliminate them!)

Our Results
Our main, positive result, shows that collusion-free proto-
cols are possible under standard computational and physical
assumptions. Namely,

Theorem 1: If trapdoor permutations exist, any fi-
nite, partial-information game with publicly observ-
able actions3 has a collusion-free protocol whose com-
munication channels consist of broadcast and plain en-
velopes.

Furthermore, we elucidate why our prerequisites for collusion-
free protocols are necessary by proving that each of (a) the
use of envelopes, (b) the finiteness of the game, and (c) the
observability of its actions, is an essential element for The-
orem 1 to hold.

Theorem 2: There exists a finite game with publicly
observable actions that has no collusion-free protocol
whose only communication channel is broadcast.
Theorem 3: There exists an non-finite game with
publicly observable actions that has no collusion-free
protocol whose communication channels consist of broad-
cast and plain envelopes.

3Recall (see Section 2 anyway) that a game with partial
information is finite if it has a finite number of players and
finitely many stages, each specified by a finite stage function.
Such a game has publicly observable actions if any action a
player takes becomes immediately known to all players (un-
like the global state and the players’ private information).

Theorem 4: There exists a finite game with private
actions that has no collusion-free protocol whose com-
munication channels consist of broadcast and plain en-
velopes.

Remarks

. Using envelopes in a collusion-free protocol may appear
contradictory rather than essential, because any form of
physically private channels could make colluding commu-
nication absolutely undetected. However, we shall use
envelopes only during the initial phase of our protocols,
that is, before the game proper begins. Malicious play-
ers, therefore, cannot use these envelopes to collude in any
meaningful way. (In the subsequent phase when the game
properly begins, all communication is broadcast only, and
our computational assumptions become crucial.)

. Theorem 1 solves Crépeau’s open problem [8], because
Poker is a finite game whose actions are publicly observ-
able: the only actions are publicly announcing a subset of
{1, . . . , 5} (representing the cards in his own hand which
the player wants to replace4) or announcing bets, calls,
and folds.

. Collusion-free security is very subtle and depends, as to
be expected, on the precise details of the game’s specifi-
cation. To illustrate, let Poker ′ be the following variant
of Poker: when a player chooses which of the 32(=25)
subsets of his cards he wants to replace, all other players
learn only the cardinality of the chosen subset (i.e., an
integer between 0 and 5). While both games have imple-
mentations secure against monolithic adversaries, Poker
has collusion-free implementations, but Poker ′ has none.5

High-Level View of Our Solution
Our collusion-free protocol for a game G consists of two, dis-
tinct subprotocols, P1 and P2, which are executed sequen-
tially. Every player runs P1 with an empty private input,
and then P2 with a private input consisting of his own his-
tory from P1’s execution.

The two subprotocols play dramatically different roles in
our solution. To begin, P1 is heavily probabilistic, while
P2 is purely deterministic. Additionally, P1 uses broad-
cast and envelopes as communication channels, while P2

solely uses broadcast. Finally, each subprotocol satisfies
its own crucial property. The first one satisfies game in-
dependence: throughout P1’s execution, no portion of G is
actually played. The second one satisfies verifiable unique-
ness: all honest players can verify that the only source of
non-determinism for a player in P2 is the choice of actions in
G made by his corresponding “human player.” A bit more
precisely, fix any player i and any sequence of actions for Hi.
Then, whenever Ti is about to broadcast a message in P2,
though what he is going to say is unpredictable, there is a

4This is a bit open to interpretation, because Poker and its
variants are traditionally described in a hybrid “physical-
deck implementation” instead of an ideal or real one. How-
ever, in all such hybrid implementations, a player must keep
his cards visible at all time. Therefore, everyone can see
that a player is choosing —say— the action of replacing his
first and third card with the next two cards in the deck.
5Since Poker ′ is not a game with publicly observable actions,
Theorem 1 does not apply. To be sure, the fact that Poker ′

has no collusion-free implementations can be proven using
the same techniques as in our proof of Theorem 4. Indeed,
at the price of a few additional complications, we could have
chosen Poker ′ as the example game necessary to establish
Theorem 4.

single message he can broadcast without causing all honest
players to abort.

As already mentioned, collusion-free protocols for non-
trivial games must overcome the paradox that every se-
cure protocol must be probabilistic, yet probabilism intro-
duces steganography. However, our two-subprotocol struc-
ture carefully avoids any contradiction. Since P1 is prob-
abilistic, our resulting collusion-free protocol is also proba-
bilistic. However, thanks to game independence, the poten-
tial for steganography in P1 is useless because no player has
yet received any partial information about the initial global
state of G (nor selected any action in G). In other words,
whatever information bad players may steganographically
exchange in P1, they also may exchange —and are entitled
to exchange— in the ideal implementation of G before the
execution with the trusted party begins! But if steganog-
raphy is useless in P1, it is impossible in P2! Thanks to
verifiable uniqueness, P2 eliminates any possible choice due
to the protocol proper, and therefore removes all steganog-
raphy except for that already intrinsic to G.

Having clarified the logical structure of our solution, let
us now give some idea of how P1 and P2 actually work. In
essence, P2 replaces the probabilistic player i of a tradition-
ally secure protocol for G by a deterministic one that utilizes
randomness that is properly selected and fixed in P1, before
the game begins. The honest players of P2, however, should
be able to verify that this is indeed the case. We thus de-
mand that player i provide a zero-knowledge proof that he is
properly executing P2. Unfortunately, this would result in a
vicious circle, since a ZK proof —being a secure protocol—
would itself require randomness. To break this circularity,
we use so called unique zero knowledge proofs (uniZK for
short) 6 rather than traditional, ZK ones. A uniZK system
for a NP-language L satisfies the completeness, soundness
and zero-knowledgeness properties of a traditional ZK sys-
tem, but differs in the following two ways. First, uniZK
works in a public-key setting. (Namely, the prover has a
public key, upk, and a matching secret key, usk, and uses
the latter, along with a proper witness, to create a proof of
membership in L. Conversely, the verifier uses PK in order
to check such a proof.) Second, whenever there is a unique
witness for x ∈ L, there is exactly one proof acceptable by
the uniZK verifier! (Notice that our construction will only
need to prove theorems for “unique-witness languages.”) To
enable our use of uniZK proofs in P2, we also use P1 for gen-
erating public and secret uniZK keys for all players, because
such key generation requires randomness.

One last complication arises. If a bad player i shares
knowledge about his secret uniZK key with a bad player
j, then any uniZK proof that player i generates is no longer
zero-knowledge, and can actually be used to subliminally
convey information. For instance, by giving a uniZK proof
in P2 that “there exists a string w satisfying a polynomial-
time predicate Q”, player i precisely reveals w to j, and
does so without being detected by any honest player! It is
thus a requirement in P2 that player i be the only player to
know his own secret uniZK key. This requirement prohibits
us from instructing player i to generate his matching uniZK
keys, uski and upki, on his own. Else, a malicious i could
inform his accomplice j, before P1 begins, that (uski,upki)
will be the uniZK keys that he will generate during P1. Nor
can the keys be jointly generated via a broadcast-only pro-

6The original definition and construction of uniZK proofs
is presented in [15]. However, for our application, a weaker
version (requiring weaker assumptions) suffices.

tocol (e.g., via a proper secure function evaluation). This
would be another vicious circle, because secure, broadcast-
only protocols rely on public-key encryption. Once again, i
can share with j the secret decryption key he plans to use
in P1, and then j could simply compute the same uski that
i computes in P1 by reading all the broadcasted, encrypted
message “addressed to” i.

It is precisely in order to break this second circle that our
protocol makes use of physical envelopes. Namely, we ensure
that uski —as well as any other secret of player i— depends
on unpredictable messages that the other players deliver to i
in sealed envelopes as the last step of P1. Thus, at that mo-
ment, because there is at least one good player that delivers
an unpredictable string σ to i in a sealed envelope, no other
bad player j may know what σ can be. Moreover, because
no extra channels channels are available, i cannot inform
j about σ, and thus only player i will be able to compute
uski. (Notice that i cannot use such envelopes to slip σ to
j. This is so because each player a is instructed to put his
string σab for player b into a sealed envelope Eab and “put
it on the table” before any envelope is actually delivered.)
To maintain this unique-knowledge situation, it must also
be impossible for i to steganographically communicate uski

to j during P2. But in P2, each message is broadcast and
verifiably unique. Thus, the only hope for i to subliminally
inform j about uski rests in the game-intrinsic entropy of
G. Here we use the fact that G is a finite game, and thus the
total entropy available to a player is constant and known.
Consequently, only a constant number of bits about uski

can be communicated by i to j using the game. With a
sufficiently large security parameter, and properly choosing
our crypto primitives, such a small amount of information
about uski is provably useless for any adversary to violate
our collusion-free definition.

Organization The focus of our paper is the definition of
collusion-free protocols in Section 2. In Section 3 we present
a construction for them, and in Section 4 we end with our
impossibility results.

2. DEFINITION
A protocol is secure if “all malicious parties in the real

execution of the protocol can be simulated in an ideal exe-
cution.” Our primary modifications to this mantra are that
(1) our ideal adversaries do not communicate during an ideal
execution —to capture their independence— and (2) we re-
quire an efficient function f which “reconciles” separate ideal
adversary views into a single output that is indistinguishable
from the joint views of the real adversaries. Our definition
must ensure that whatever malicious players can learn by
comparing notes after a real execution, they can also learn
after an ideal execution. Of course, it would be preferable
if the malicious players, separated during the game, remain
separated forever after, but players do not live in Faraday
cages forever! (See Remark after the definition for a further
discussion of how our definition achieves this.)

As already mentioned, in our basic scenario only one player
is active at any time, and between the actions of two play-
ers each player receives his own partial information (possibly
empty). 7 We tightly couple a real execution to its corre-
sponding ideal one by requiring that all information about

7Our definition generalizes to cases where multiple ideal
players take actions at the same time, but this requires cor-
responding our protocol to make use of simultaneous broad-
cast channels. For clarity, we defer this generalization and
focus on the single action case.

the global state of the ideal execution can be extracted (per-
haps in exponential time) from the message traffic of the
real execution. In order to make sure that every human
player “knows” his own partial information, we require that
a real player’s view of the message traffic can be (efficiently)
mapped into an ideal player’s state.

Games
A finite game G with n players and s stages consists of

. Σ, a finite set of game states,

. Xj
i , a finite set of possible actions for player i at stage j,

. Y j
i , a finite set of possible outputs for player i at stage j

representing partial information about the global state,
. turn : [1...s] → [1 . . . n], a function which maps each

stage to the player who must take an action during that
stage, and

. g1, . . . , gs, a sequence of probabilistic stage functions where
gj : (Xj

turn(j)
× Σ)→ (Y j

1 × · · · × Y j
n × Σ).

In an ideal execution, an honest human player, Hi, is a se-
quence of probabilistic (strategy) functions, {H 1

i , . . . , H s
i }.8

A malicious player, Ai, is an efficient interactive Turing ma-
chine which takes a unary input (and as usual retains state
between stages). Such Ai chooses actions for player i during
an execution of the game and additionally, at the end of the
game, produces an auxiliary output.

The global state of a game at stage j, denoted σj , is a
string encoding all actions taken by all players prior to stage
j, all outputs sent to the players prior to round j and any
private randomness used by the stage functions. 9 The local
state of a player i, denoted σj

i , consists of the actions taken
by i and all of the outputs received from the trusted party
by i prior to stage j. Letting Σj

i be the set of all possible
local states for player i at the beginning of stage j, then
each H j

i maps Σj
i into the action set → Xj

i .

An action, xj
i ∈ Xj

i is a public action if, whenever the

active player i of stage j chooses action xj
i , then xj

i is part
of the partial information each player receives at the end
of stage j. (Notice that this is a constraint on the stage
function gj .)

Ideal Executions Let C be a proper subset of [1, n]. In
an ideal execution of G with security parameter 1k and
trusted party TG, the players are partitioned into a set of
ideal adversaries, {Ac : c ∈ C}, and a set of human players,
{Hi : i 6∈ C}.

Prior to the first stage of an ideal execution of G, the
trusted party generates σ1, which, without loss of general-
ity, contains all the random coins needed to evaluate the
stage functions of G. For stage j, suppose the trusted party
has global state σj and that i = turn(j). If i 6∈ C, then the

honest player function H j
i (σj

i) is invoked on player i’s local

state, σj
i , to compute an action xj

i which is sent to TG. If i ∈
C, the ideal adversary Ac is given unary input 1k and (run-

ning from his previous state) computes an action xj
i which is

delivered to TG. The trusted party then computes the par-
tial information vector (σj+1, yj

1, . . . , y
j
n) = gj(σj , xj

i). The
players receive their partial information, one-by-one in lexi-
graphic order, via the following process : for the ith player,
TG first asks all the players, one-by-one, if player i should

8We may think of these functions as being non-
deterministically chosen to capture the whimsical manner
in which a player acts in a game.
9In this section, a superscript indexes time, a subscript in-
dexes the player.

receive his partial information. If no player objects, TG

delivers yj
i to player i. Else, if a player objects, then TG

informs all players that the game has been aborted (and ap-
pends “abort” to the global state). The execution continues
in a similar fashion for all s stages.

We use the notation eI ← 〈 (Hi : i 6∈ C)
1k

←→ (Ac : c ∈ C) 〉
to denote that eI is a random ideal execution of G with se-
curity parameter 1k, ideal adversaries {Ac : c ∈ C}, and
human players {Hi : i 6∈ C}. If eI is an ideal execution, the
final output of adversary Ac is denoted outc(eI). When
indexed by a set C, outC(eI) consists of the concatenation
of outc(eI) for all adversaries c ∈ C.

Protocols An r-round, n-player protocol Π for a game G is
defined by (1) a set of n efficient oracle ITMs, {Ti, . . . , Tn},
each of which makes at most s oracle calls, (2) r communica-
tion channels, {B1, . . . , Br}, (3) a (not necessarily efficient)
extraction function ext described below, and (4) an efficient
player-extraction function exti for each player i. We refer
to machine Ti as the interpreter for player i.

Real World Executions Let C be a subset of [1, n]. An
execution of protocol P with human players H1, . . . , Hn and
a set of malicious players {Ac : c ∈ C}, is defined as follows.

The ith player in this execution is Ai if i ∈ C, and T Hi
i

otherwise. Since the ITM Ti is an oracle machine making

at most s oracle calls, by the notation T Hi
i , we denote the

interpreter Ti running with oracle access to human player
Hi such that the jth oracle call of Ti is answered by the
probabilistic function H j

i .
Prior to round 1, all parties are given a security parameter

1k as input. For each round t of P , all communication occurs
via channel Bt, for honest and malicious players alike.

As before, we use the notation

e← 〈 (T Hi
i : i 6∈ C)

1k

←→ (Ac : c ∈ C) 〉

to denote that e is a random execution of P with human
players {Hi : i 6∈ C} and adversarial algorithms {Ac : c ∈
C}. The message traffic in a real execution e is denoted
traffic(e) and consists of all messages sent during an of ex-
ecution of P . Similarly, viewi(e) denotes the view of player
i and consists all messages received by player i as well as the
random coins used by either Ai or Ti (depending on whether
i ∈ C or not respectively). As before, viewC(e) is the con-
catenation of viewc(e) for all players c ∈ C. Finally, the
(possibly exponential time) function ext : traffic → Σ
maps the traffic of an execution to a global game state in
G and the efficient function exti : viewi(e) → Σi maps a
player’s view to a human player state.

Definition 1 (Collusion-free Protocol). A proto-
col P is a Collusion-free realization of game G if for every
proper subset C of the players and any set of efficient adver-
sarial algorithms {Ac : c ∈ C}, there exist ideal adversaries
{Ac : c ∈ C} such that for any set of honest human players
{Hi : i 6∈ C}, for all c ∈ C, there exists an efficient function
f so that the following pair of ensembles are computationally
indistinguishable

e← 〈 (T Hi
i : i 6∈ C)

1k

←→ (Ac : c ∈ C) 〉 :
(viewC(e), extc(viewc(e)), ext(traffic(e)))

ff
k

(1)

eI ← 〈 (Hi : i 6∈ C)

1k

←→ (Ac : c ∈ C) 〉 :
(f(outC(eI)), σ

s
c(eI), σ

s(eI))

ff
k

(2)

Our notation above follows closely the convention set forth
in [13] and [3]. Briefly, the set notation in (1) denotes the

ensemble of probability spaces over the tuple of strings,
(viewC(eI), extc(viewc(eI)), ext(traffic(eI))), which is
indexed by a security parameter k, and generated by ran-
domly sampling a Real protocol execution e and applying
the appropriate view and ext functions. Similarly, the set
notation in (2) denotes the ensemble of probability spaces
over (f(outC(e)), σs

c(e), σ
s(e)), also indexed by a security

parameter k, but generated by randomly sampling an Ideal
execution and applying the out and σ functions as specified.

Remark. The reconciliation function f models the privacy
guarantee that malicious players cannot combine their infor-
mation after an execution to learn extra information about
an honest player’s strategy that they could not learn in an
ideal execution.

There are several ways that one could model this require-
ment. An optimist might consider removing f from the def-
inition and just requiring that (outC(e), . . .) be indistin-
guishable from (viewC(eI), . . .). This would imply that for
c ∈ C, Ac must generate the public broadcast traffic of the
protocol, and must do so without knowledge of any other
player’s private outputs.

In a real execution, however, the broadcast traffic in each
view perfectly coincides, bit for bit! The optimistic defini-
tion would thus obligate each A1 to generate the same broad-
cast traffic independently during the game. Informally, for
every round j, A1 must produce exactly the message broad-
cast by A2 on input σj

2 without knowing σj
2 — a task which

seems impossible.
By using the reconciling function f , and, crucially, the

fact that the game is finite, we are able to circumvent this
difficulty and design a protocol which meets our definition.
At the same time, since f is efficiently computable, our def-
inition still captures the stated privacy guarantee.

3. CONSTRUCTION

Theorem 1. If trapdoor permutations exist, any finite,
partial-information game with publicly observable actions has
a collusion-free protocol whose communication channels con-
sist of broadcast and plain envelopes.

In this section, we present our Collusion-free protocol
which is based on the original GMW [11] protocol for se-
cure multi-party computation. We feel it is most natural
to present our protocol by making references to the steps of
the GMW protocol, and therefore, we provide an overview
of the important pieces of the GMW protocol in Appendix
A. (A more thorough explanation of the GMW protocol can
be found in [10].)

As noted in the Introduction, our protocol for playing any
finite game G consists of two subprotocols, a pre-processing
subprotocol, P1, immediately followed by a computation sub-
protocol, P2. (We denote the entire protocol as P1 + P2.)
The pre-processing phase computes a function Pre in such
a way that, even if players maliciously collude, no player has
knowledge of another player’s private output. The compu-
tation phase uses the private outputs from P1 to perform
a secure evaluation of the stage functions of G in a verifi-
ably unique fashion by using the uniZK proofs introduced
in [15]. Since G is finite, one can upper bound the total
number of bits in all the theorems that need to be proved
during the computation process. Hence, a bounded theorem
uniZK proof system suffices for P2.

10

10The original uniZK paper[15] provides a system attaining
a stronger multi-theorem notion of uniZK but requires a

Physical Envelopes As we show in Section 4, some type
of physical channel assumption is necessary to achieve a
collusion-free protocol for general games. Thus, our protocol
assumes the existence of physical envelopes that support the
operations Send(R, m) and Receive(S) which satisfy the
following properties: (1) Binding —when a receiver, R, calls
Receive(S), he learns the values m for all previous calls to
Send(R, m) made by sender S (2) Hiding —when a sender
calls Send(R, m), no one gains any information about m
and when receiver calls Receive(S) no one besides R gains
any information about m (3) Public —when a sender calls
Send(R, m) everyone learns the string “(Send, S, R)” and
when a receiver calls Receive(S), everyone learns the string
“(Receive, S, R).” We think of Send(R, m) as correspond-
ing to an action where the sender puts m in an envelope,
writes his name on the envelope and hands it to R. We then
think of Receive(S) corresponding to the action where the
receiver publicly opens all envelopes from S and privately
reads their contents. 11

The Function Pre. The function Pre is a probabilistic
function that maps n private inputs x1, . . . , xn to n private
outputs y1, . . . , yn. However, we find it easier to explain
Pre as a function from a single public input 1k to a com-
mon public output Common and private outputs o1, . . . , on.
That is, for each i, xi = 1k and yi = (Common, oi).

Let the polynomial p(k) upper-bound the total number of
bits in all of the theorems that need to be proven during
the Computation phase of our protocol running on security
parameter 1k. Due to the structure of our protocol, p() will
only depend on the stage functions of G, and the security
parameter k.

Let G be the generator for a public-key encryption scheme,
Guzk be the generator for a p-bounded-theorem uniZK sys-
tem and com(string, coins) be the commitment algorithm
for a perfectly binding commitment scheme. The function
Pre then operates by :

1. Running G(1k) n times to obtain matching public and
secret encryption keys (pk1, sk1), . . . , (pkn, skn).

2. Running Guzk(1k, p(k)) n times to obtain matching
public and secret uniZK keys (upk1,usk1), . . . , (upkn,uskn).

3. Selecting random strings τ1, . . . , τn, R1, . . . , Rn, r1, . . . , rn,
R′

1, . . . , R
′
n, r′1, . . . , r

′
n, and v1, . . . , vn.

4. Computing commitments to the random tapes, com(R1, r1),
. . . ,com(Rn, rn), com(R′

1, r
′
n), . . . , com(R′

n, r′n), and
com(sk1|usk1, v1), . . . ,com(skn|uskn, vn).

The output Common is then the 6-tuple consisting of

. (pk1, . . . , pkn), the n-vector of public encryption keys

. (upk1, . . . ,upkn), the n-vector of public uniZK keys

. (com(R1, r1), . . . ,com(Rn, rn)), an n-vector of commit-
ted random tapes

. (com(R′
1, r

′
1), . . . ,com(R′

n, r′n)), an n-vector of commit-
ted random tapes

. (τ1, . . . , τn) , the n-vector of common random strings

. and com(sk1|usk1, v1), . . . ,com(skn|uskn, vn), the n-vector
of committed secret keys.

specific number theoretic assumption instead of working for
any trapdoor permutation. In the full version of this paper,
we provide a p-bounded theorem uniZK system based on
one-way permutations.

11Note that alternatively, a single invocation of a channel
allowing simultaneous delivery of private messages would
suffice for our protocol.

The private output oi for player i is the 7-tuple consisting
of (ski,uski, Ri, ri, R

′
i, r

′
i, vi).

The Pre-Processing Phase
The pre-processing protocol P1 proceeds as follows:

1. The players run Steps 1 - 4 of the GMW protocol to
compute the function Pre on input 1k.

2. As in Step 5 of GMW, the players broadcast encryp-
tions of their shares of the public output Common and
provide zero-knowledge proofs that the encryptions of
the shares are correct. However, departing from the
GMW protocol, the players do not yet broadcast their
shares of the private outputs.

3. Envelopes are used to exchange the shares of the play-
ers’ private inputs. Each player i invokes Send(j, mj)
once for each other player j where mj is player i’s share
of private output oj . Once each player has observed
(“Send”, i, j) for each pair i and j, each player then
invokes Receive(j) once for each other player j. If
any player observes (“Receive”, i, j) before observing
(“Send”, j, k) for all k 6= j then that player broadcasts
an abort flag. (That is, if player j opens his envelope
from player i before sending all n of his envelopes, he
is presumed to be cheating, and so each honest player
is instructed to abort.) Each player then reconstructs
his private output oi = (ski,uski, Ri, ri, R

′
i, r

′
i, vi). To

verify that this private output is correct, player i com-
putes com(ski|uski, vi), com(Ri, ri) , and com(R′

i, r
′
i)

and checks that the resulting strings match the corre-
sponding commitment strings included in the Common
public output. If any of these checks fail, the player
broadcasts an abort flag.

Computation Phase
In the computation protocol, denoted P2, the players run

a sequence of secure computation protocols to evaluate the
stage functions of G. Each of the secure computation pro-
tocols, which we refer to as UNI-GMW protocols, are based
on GMW but differ as follows:

. A UNI-GMW protocol only works on finite functions (in-
dependent of the security parameter k).

. The players do not perform Step 1 of GMW, but instead
use the keys (pki, ski) computed during P1.

. The players do not perform Step 2 of GMW, but instead
use the committed random tapes com(Ri) computed dur-
ing P1.

. The players perform Steps 3 - 5 as in GMW except that
whenever player i is instructed to give a zero-knowledge
proof that an encryption or commitment is correct he in-
stead gives a single uniZK proof using key upki and string
τi that “The encryption or commitment is correct and
that the encryption or commitment is computed properly
using random coins committed in com(R′

i, r
′
i).”

We now specify the Computation phase as follows:

1. The players run a UNI-GMW protocol on empty input
to generate a random sharing of initial global state σ1.
Interpreter Ti initializes a variable, σi, to null, and
maintains it throughout this phase by appending to
it, all of the actions taken and partial information re-
ceived by player Hi.

2. Let i = turn(j). In order to emulate stage j of G, in-
terpreter Ti queries its oracle Hi on input σi to obtain
an action xj

i (this is the action that the human player
would send in an ideal execution). All interpreters
then engage in n+1 sequentially executed UNI-GMW
protocols to compute the following functions (we are
splitting the stage function gj into n+1 smaller steps):

. sharej : This function computes a sharing of σj+1.
Player i’s private input to this step consists of his
share of the global state σj and his action xj

i . All
other players provide their own share of σj as their
private input.

. outputi,j : This function computes player i’s out-
put in stage j based on the stage function gj . The
private inputs to this function are the same as for
sharej .

For each party i (in order from 1 to n), the inter-
preters run a UNI-GMW protocol on the inputs to
produce the private partial information yj

i for player
i. Each interpreter then updates its state, σi, by ap-
pending yj

i .

For all j > 1, the inputs to sharej and outputi,j

include outputs produced during earlier steps. There-
fore, when sharing these inputs, the player provides an
additional uniZK proof that the input being shared is
the same as the output received in the previous step.

4. IMPOSSIBILITY RESULTS
All of our impossibility results make use of the ideal game

H, depicted in Figure 4, which is finite and has publicly
observable actions.

P2

P1

P3

Trusted Party

2. Sends
c1,c2,c3

3. Guess c1

4. Guess c2 5. Guess c3
1. Picks 3 colors

ci ∈r {♥ or♠}

Figure 1: Game H. The trusted party privately
hands Player 1 three cards, each of which is red
with probability 1

2
and black otherwise. Player 1

then (publicly) guesses the color of card 1, Player 2
(publicly) guesses the color of card 2 and Player 3
(publicly) guesses the color of card 3. The trusted
party then reveals to everyone the identities of the
players who guessed correctly.

Envelopes are necessary
Here we prove that a collusion-free protocol which works
for any finite game must use some type of physically pri-
vate channel.12 The intuition is that unless the adversaries
have distinct views of the protocol execution, they can easily
simulate a monolithic adversary.

12Although our proof is with respect to our particular defi-
nition of collusion-freeness, the structure of the proof does
not rely on the specific details of our model. A similar theo-
rem could be proved with respect to any sufficiently strong
definition of collusion-freeness.

Theorem 2. The game H (which is finite and has pub-
licly observable actions) has no collusion-free protocol whose
only communication channel is broadcast.

Lemma 1. In the game H, a traditional (monolithic) ad-
versary can perform attacks which cannot be simulated in a
collusion-free ideal execution of H as defined in Section 2.

Proof Sketch:
Recall that a traditional (monolithic) adversary receives

all messages sent to any of the members of the coalition
C and dictates all messages to be sent by any members of
C. Consider a coalition C = {1, 2}. An adversary A1,2 that
receives all messages sent to player 1 can determine the color
of cards 1 and 2. Therefore, A1,2 can instruct player 1 and
player 2 to each guess correctly in every execution.

Now consider a coalition-free ideal execution of H. In
such an ideal execution, after player 1 learns the color of
the cards, the only information from player 1 that player 2
receives from the trusted party is the guess player 1 makes
about card 1. Therefore, if player 1 wins (i.e., correctly
guesses the color of card 1) with probability 1, then player 2
receives no information about the color of card 2 (since the
color of each card is chosen independently by the trusted
party). In this situation, the mutual information between
the color of card 2 and the guess of player 1 (conditioned on
Player 1 winning) is zero. Therefore, player 2 cannot win
with probability greater than 1

2
, and thus there cannot exist

ideal adversaries A1 and A2 that cause player 1 and player
2 to each win with probability 1. 2

Lemma 2. If protocol P uses only broadcast channels, then
any attack performed by a (traditional) monolithic adver-
sary A can be simulated by a set of independent adversaries
{Ac : c ∈ C} in a collusion-free real execution of P (as
defined in Section 2).

Proof Sketch: With only broadcast, independent adversaries
in a collusion-free real execution can emulate any monolithic
adversary A, and hence collusion-free security is not possi-
ble. To show this formally, we construct new adversaries
{A′

c : c ∈ C} who operate in a collusion-free real execution
of P and generate exactly the same distribution of messages
as A.

Our set of adversaries, A′
c work as follows. Before the pro-

tocol starts, the adversaries A′
c agree upon a random tape,

r, via a coin-flipping protocol. Once the protocol starts,
each machine begins to execute an independent copy of A
using the random tape r. During the protocol, each inde-
pendent adversary feeds all of the broadcast messages into
his personal copy of A. Whenever it is A′

c’s turn to send a
message, he broadcasts whatever message A would have sent
on behalf of party c. Since each independent A′

c is supply-
ing exactly the same inputs and random tape to his copy of
A, the |C| copies of A will always have the same state, and
will generate exactly the same messages as the monolithic
adversary, A, would generate in a traditional real execution.
2

Proof Sketch of Theorem 2: Lemma 2 states that when
a protocol P uses only broadcast, then any attack by a tra-
ditional (monolithic) adversary can be simulated by inde-
pendent adversaries in a collusion-free real execution. If P
were collusion-free, then these attacks could also be simu-
lated in a collusion-free ideal execution. If P worked for
any finite game then it would contradict Lemma 1. Thus, a
collusion-free broadcast protocol for any finite game cannot
exist.

Non-finite Games are Impossible
Here we prove that there exist some non-finite games which
do not admit collusion-free protocols. Keeping in mind the
necessity of secret envelopes for collusion-free protocols, the
intuition is that in some non-finite games, adversaries can re-
peatedly use game-instrinsic steganography to convey what-
ever information was previously exchanged in the secret en-
velopes.

Theorem 3. There exists a non-finite game H ′ with pub-
licly observable actions that has no collusion-free protocol
whose communication channels consist of broadcast and plain
envelopes.

Proof Sketch: Let H ′ be a repeated version of game H
in which after each round of playing H, player 1 decides
whether the game should continue or terminate. (That is,
the game H is repeated an a priori unbounded number of
times.) After player 1 decides to terminate, the trusted
party announces which players guessed correctly in each
round.

Let P be a collusion-free protocol for H ′. From Theorem
2 we know that any collusion-free protocol for a finite game
must use envelopes. The same is true for non-finite games
(by the same argument) and therefore P must use envelopes.
There are three cases to consider.

Case 1: The envelopes are used once after player 1
decides to terminate the game. At this point, all of the
players’ moves have to be determined by the transcript of P
thus far. Otherwise, the players’ in a real execution could
condition their moves based on the knowledge of when H ′

terminates— something not possible in an ideal execution
of H ′. If the players’ moves have already been determined,
then the phase of P in which these moves were chosen used
only broadcast. Therefore, by an argument similar to one
presented in Lemma 2, during the entire period of P when
actions are chosen, the bad players can simulate any mono-
lithic adversary. This contradicts collusion security.

Case 2: The envelopes are used once before player
1 decided to terminate the game. Thus, there are an
arbitrary number of rounds that occur after the use of the
envelopes. Let M be an upper bound on the number of bits
sent to any player over the envelope channel. (Note since the
number of rounds is unbounded, M must be independent of
the number of rounds). Consider a malicious player 1 and
player 2 who agree on an M bit random string R prior to
the protocol.13 In each round i ≤M of H, player 1 guesses

“Red” if the ith bit of the (concatenation of) the message(s)
received by player 1 in the physically private channel is equal
to the ith bit of R and guesses “Black” otherwise. Note
that after round M , player 2 has knowledge of all messages
received by player 1 throughout the protocol. Therefore
player 2 can compute any value that player 1 can compute.
Thus in round M + 1 of the protocol, since player 1 can
compute the color of card 2, player 2 must also be able to
compute the color of card 2. This means that player 1 and
player 2 can both correctly guess the color of their card in
round M with probability 1. This is impossible in an ideal
execution of H.

Case 3: The envelopes are used at multiple rounds
throughout the protocol. If all uses of the envelope chan-
nel occur after player 1 decides to terminate H ′, then the

13Alternatively, in the case that M is not known prior to the
start of the protocol players 1 and 2 could agree on the seed
of a pseudo-random number generator.

argument from Case 1 yields a contradiction. Otherwise,
consider a malicious player 1 and player 2 who agree before
the game on a random bit b. Let round r be the first round
of H in which the envelopes are used after the completion
of round 1. (Note if such an r does not exist, then an ar-
gument similar to Case 2 yields a contradiction.) During
each round i < r of H, player 1 correctly guesses the color
of card 1 and player 2 makes his guess randomly. Then,
when the physical channel is used prior to round r, player
1 privately sends to player 2 (unobserved by the other play-
ers) the color of card 2 in round 1. Subsequently in round
r, player 1 again correctly guesses the color of card 1 and
player 2 makes a guess which is equal to the color of card 2 in
round 1. Player 1 then terminates the game. In this game,
player 1 has guessed correctly in every round and player 2’s
guess in round r is equal to the color of card 2 in round 1.
This type of correlation is impossible in an ideal implemen-
tation of game H ′, thereby contradicting the collusion-free
security of P . 2

Private-Action Games are Impossible
Here we prove that games with private actions generally do
not have collusion-free protocols. Intuitively, when a player
j takes a private action in an ideal execution, player j “can-
not” use his choice of action to convey information to a
co-conspirator. However, in any real execution, the message
traffic must somehow encode (via encryption, say) player j’s
private action. Since the messages sent by player j are seen
by other players (as opposed to just the trusted party) j can
choose his action so that the message traffic conveys some
information to a co-conspirator.

Note, however, that one can easily transform a private
action game G into a similar game G′ with publicly observ-
able actions in such a way that G and G′ are identical with
respect to what can be accomplished by a traditional mono-
lithic adversary. This can be done as follows: Every time a
player must take a private action in G chosen from set A, the
trusted party in G′ sends the player a random mapping f
from A to {0, 1}k, the player publicly announces f(a), and
the trusted party updates the global state as though the
player had chosen a. The game G′ has more opportunities
for game-intrinsic steganography than G. However, in gen-
eral, the power of a maliciously coalition of players is much
less in a collusion-free protocol for G′ than in a traditional
secure protocol for G, which in some sense, is the best one
can hope for.

Theorem 4. There exists a finite game, H∗, with private
actions that has no collusion-free protocol whose communi-
cation channels consist of broadcast and plain envelopes.

Proof Sketch:
We choose a simple variation of H as a counterexample

for this theorem, but our techniques apply to a broad class
of games with private actions including the game Poker′

discussed in the Introduction.
Let the private-action game H∗ proceed as H does with

the following modifications : Player 1 privately (instead of
publicly) guesses the color of card one. Denote this guess
g1. Additionally, the trusted party sends a private message
m2 to player 2 such that, with probability 1/10, m2 contains
player 1’s guess, i.e., m2 = g1, and otherwise is the symbol
⊥. Likewise, the trusted party sends a private message m3

to player 3, such that (independently) with probability 1/10,
m3 contains player 1’s guess, i.e., m3 = g1, and otherwise is
the symbol ⊥.

Let T i
R and T i

B denote the set of honestly generated tran-
scripts of protocol P whose local extraction yields a player
i guess of “Red” and “Black” respectively. In any collusion-
free protocol P for H∗ both sets must be non-empty and
statistically far (the latter being a consequence of the exis-
tence of the local extraction function).

Let ki be the first protocol round in which the distribution
of protocol-round ki messages in T i

B is statistically far from
the distribution of round ki messages in T i

R.
We observe that at round k1, player 1 must know the color

of Cards 1, 2, and 3 (in the sense that they can be extracted
from player 1’s view) because the honest interpreter must
send the colors of Cards 1, 2, 3 to it’s corresponding human
player before it can receive the action (guess) from its human
player.

We first consider the case where k1 < k2. There are two
sub-cases. The first sub-case is when Player 1’s round k1

message is observed by Player 2. If so, consider the follow-
ing malicious strategy for players 1 and 2. Before the game,
players 1 and 2 agree on a random string R. In round k1,
player 1 computes the message Mred that would be sent by
the honest interpreter in a “Red” transcript and the mes-
sage Mblack that would be sent by the honest interpreter in
a “Red” transcript. If Mred ·R14 differs from Mblack ·R then
player 1 chooses the guess g1 such that Mg1 ·R corresponds
to the color of Card 2.15 Otherwise, player 1 chooses g1

to correspond to the color of Card 2. If player 2 receives
an observable m2 6= ⊥ then player 2 selects m2 as his guess.
Otherwise, player 2 selects the action corresponding to M ·R
(where M is player 1’s round k message).16 This malicious
strategy allows player 2 to correctly guess card 2 with prob-
ability greater than 1

2
(1 + 1

10
), which violates the collusion-

free property of the protocol since winning with such odds
is impossible in an ideal implementation of H∗.

The second sub-case is when Player 1’s round k1 message
is observed by Player 3 but not by Player 2 (that is, the
message is sent privately in an envelope to Player 3). In this
case, if Player 1 and Player 3 maliciously collude, Player 1
can send the color of Card 3 to player 3 in the envelope (in
addition to the honestly generated message M) and player
3 can guess the color of card 3 correctly with probability
greater than 1

2
(1 + 1

10
) (which is impossible in an ideal im-

plementation of H∗.17

Next, consider the case where k1 ≥ k2. Here we observe
that at round k1, player 2 must be able to extract m2 from
the transcript because the honest interpreter must send m2

to the human player 2 before the interpreter can receive the
action (guess) from the human player. We now consider
the following malicious strategy for players 1 and 2. Before
the game, players 1 and 2 agree on a random string R. In
round k2, player 2 computes the message Mred that would be
sent by the honest interpreter in a “Red” transcript and the
message Mblack that would be sent by the honest interpreter
in a “Red” transcript. If Mred ·R differs from Mblack ·R then
player 2 chooses his guess g2 such that Mg2 · R = 0 if, and

14Where M ·R denotes the inner product of M and R.
15Here, 0 means “Black” and 1 means “Red”.
16We pessimisticly assume that Pr[Mblack 6= Mred] < 1/10.
If the probability were greater than 1/10, then player 2
would always choose the action corresponding to M ·R.

17In fact, even if one assumes stronger private channels such
as envelopes which somehow limit the number of bits sent
or magically ensure that the message sent is distributed cor-
rectly, Player 1 and Player 3 could still collude in the same
way that Player 1 and Player 2 colluded in the proof of the
first sub-case.

only if, m2 = ⊥. Let M be the round k2 message sent by
player 2. Player 1 then computes v = M · R and selects
his action g1 so that g1 = “Black′′ if, and only if, v = 0.
This malicious strategy allows player 1 to guess “Black”
more often when Player 2 receives ⊥. However, in the ideal
game, player 1 has no information about whether player 2
receives ⊥. This contradicts the collusion-free property of
the protocol. 2

Acknowledgments. We would like to thank Oded Goldre-
ich, Rafael Pass, and Chris Peikert for helpful comments.

5. REFERENCES
[1] M. Backes and C. Cachin. Public-key steganography with

active attacks. In TCC ’05, 2005.
[2] M. Ben-Or, S. Goldwasser, and A. Wigderson.

Completeness theorems for fault-tolerant distributed
computing. In Proc. of STOC ’88, pages 1–10, 1988.

[3] M. Blum, A. D. Santis, S. Micali, and G. Persiano.
Noninteractive zero-knowledge. SIAM J. Computing,
20(6):1084–1118, 1991.

[4] C. Cachin. An information-theoretic model for
steganography. In Proc. of Information Hiding ’98, pages
306–318, 1998.

[5] R. Canetti. Universally composable security: A new
paradigm for cryptographic protocols. In Proc. 42nd
FOCS, pages 136–145, 2001.

[6] R. Canetti, U. Feige, O. Goldreich, and M. Noar.
Adaptively secure multi-party computation. In Proc. 28th
STOC, pages 639–648, 1996.

[7] D. Chaum, C. Crépeau, and I. Damg̊ard. Multi-party
unconditionally secure protocols. In STOC ’88, 1988.

[8] C. Crépeau. A secure poker protocol that minimizes the
effects of player coalitions. In Crypto ’85, volume 218 of
LNCS, pages 73–86. Springer, 1986.

[9] Y. Dodis and S. Micali. Parallel reducibility for
information-theoretically secure computation. In CRYPTO
’00, pages 74–92, 2000.

[10] O. Goldreich. Foundations of Cryptography, volume 2,
chapter 7 (General Cryptographic Protocols). Cambridge
University Press, 2004.

[11] O. Goldreich, S. Micali, and A. Wigderson. How to play
any mental game. In STOC ’87, pages 218–229, 1987.

[12] S. Goldwasser and S. Micali. Probabilistic encryption.
Journal of Computer and System Science, 28(2), 1984.

[13] S. Goldwasser, S. Micali, and R. L. Rivest. A digital
signature scheme secure against adaptive chosen-message
attacks. SIAM J. Computing, 17(2):281–308, Apr. 1988.

[14] S. Katzenbeisser and F. A. P. Petitcolas. Defining security
in steganographic system. In Security and Watermarking
of Multimedia Contents IV, pages 260–268, 2002.

[15] M. Lepinski, S. Micali, and abhi shelat. Fair-zero
knowledge. In TCC 2005, pages 245–263, 2005.

[16] J. L. Nicholas Hopper and L. von Ahn. Provably secure
steganography. In Crypto ’02, 2002.

[17] A. Shamir, R. Rivest, and L. Adleman. Mental poker.
Technical report, MIT, 1978.

APPENDIX

A. THE GMW PROTOCOL
The GMW protocol allows a set of n players to privately

and correctly evaluate any probabilistic function F mapping
private inputs x1, . . . , xn (one for each player) to private out-
puts y1, . . . , yn. The GMW protocol consists of two compo-
nents. The first component is a protocol, which we refer
to as GMW’, that uses private channels to privately and
correctly evaluate F in the presence of “honest-but-curious”
players. The second component is a compiler, which we refer
to as GMW”, that transforms any honest-but-curious pro-
tocol that uses private channels into a broadcast protocol

that is secure even in the presence of malicious players who
deviate in an arbitrary fashion from the prescribed protocol.

GMW’: The protocol GMW ′ takes in a probabilistic circuit
for the function F and outputs a set of interactive Turing

machines M̂1, . . . , M̂n one for each player in the protocol.

Each machine M̂i operates by dividing its input xi into n
shares (one for each player) in such a way that all n shares
can be used to reconstruct the input but any n − 1 shares
provide no information about the input (an XOR sharing is

one such sharing). The machines M̂i then perform compu-
tation on these shares to evaluate the probabilistic circuit

for the function F . At the end of the protocol each M̂i has

a share of each of the outputs yj . Each M̂i then (for each

j) sends its share of yj to machine M̂j .

GMW”: The compiler takes as input the machines M̂1, . . . , M̂n

from the honest-but-curious protocol described above and
outputs a set of interactive Turing machines M1, . . . , Mn

one for each player in the protocol. The compiled GMW
protocol proceeds as follows:

1. Each machine Mi runs the generator for a public-key
encryption system to obtain a public encryption key
pki and a matching private decryption key ski. Ma-
chine Mi then broadcasts pki and provides a zero-
knowledge proof of knowledge of ski.

2. The machines M1, . . . , Mn run a coin flipping protocol
which produces for each i a commitment, com(Ri), to
a random string Ri. The protocol is such that all par-
ticipants can compute com(Ri) but only machine Mi

can compute Ri.

3. Each machine Mi broadcasts a commitment to the ini-
tial state of M̂i with random tape Ri and provides a
zero-knowledge proof that this commitment is correctly
computed. Note that the statement being proven is
in NP since anyone who knows the coins used to cre-
ate the commitment can easily verify the truth of the
statement.

4. Machine Mi now proceeds to simulate an honest exe-

cution of the machine M̂i. Throughout the execution,
Mi maintains a commitment to the current state of
M̂i. Every time M̂i wants to send a private message

to M̂j , machine Mi (A) computes the message based

on the current state of M̂i, (B) broadcasts an encryp-
tion of the message in the key pkj , (C) broadcasts a
commitment to the new state of Ti (after sending the
message) and (D) provides a zero-knowledge proof that
the announced encryption and the announced commit-
ment are correctly computed based on the commitment
to the previous state of Ti. Note that this statement
is also in NP since anyone who knows the coins used
to construct the commitments and the encryption can
easily verify the truth of the statement. Upon receiving
the encrypted message, Mj decrypts the message and

announces a commitment to the new state of M̂j (after
receiving the message). Machine Mj then provides a
zero-knowledge proof that this commitment was com-
puted correctly.

5. Once the simulated execution reaches the final stage
of the honest-but-curious protocol, each Mi is able to
compute a share of each output yj . Machine Mi then
encrypts his share of yj in the key pkj , broadcasts this
encryption and provides a zero-knowledge proof that
the encryption is properly computed.

