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Abstract—
We explore how to build a blind certificate authority

(CA). Unlike conventional CAs, which learn the exact
identity of those registering a public key, a blind CA can
simultaneously validate an identity and provide a certificate
binding a public key to it, without ever learning the
identity. Blind CAs would therefore allow bootstrapping
truly anonymous systems in which no party ever learns
who participates. In this work we focus on constructing
blind CAs that can bind an email address to a public key.

To do so, we first introduce secure channel injection
(SCI) protocols. These allow one party (in our setting, the
blind CA) to insert a private message into another party’s
encrypted communications. We construct an efficient SCI
protocol for communications delivered over TLS, and use
it to realize anonymous proofs of account ownership for
SMTP servers. Combined with a zero-knowledge certificate
signing protocol, we build the first blind CA that allows
Alice to obtain a X.509 certificate binding her email address
alice@domain.com to a public key of her choosing without
ever revealing “alice” to the CA. We show experimentally
that our system works with standard email server imple-
mentations as well as Gmail.

I. INTRODUCTION

Cryptography in practice relies on certificate authorities
(CAs) that validate identities and provide a cryptographic
assertion binding a public key to that identity. In addition
to their use in systems like TLS, CAs are required in
privacy-preserving or anonymous credential systems, first
introduced by Chaum [16], subsequently studied exten-
sively in the academic literature (c.f., [3,6,10,11,32,48]),
and practically realized with systems like IBM’s Identity
Mixer [12] and Cinderella [18]. These systems have a user
register with a CA (also called an identity provider) to
obtain cryptographic credentials attesting to their identity
or some attribute. The credential can then be used in
an unlinkable, privacy-preserving way to subsequently
authenticate with other systems.

But in all existing systems, registration reveals to the
CA the identity of participants. This makes the CA a sin-
gle point of privacy failure in settings where simply using
a privacy tool is sensitive, such as journalists or dissidents
living within repressive regimes, or whistleblowers at a
large corporation. We call a system that does not disclose
to any party the identities of participants as achieving
participation privacy, and ask in this work whether it is
possible to build participation-private systems that nev-
ertheless utilize validated identities. A priori the answer

would appear to be “no”, because validating an identity
would seem to fundamentally require knowing it.

In this work we make progress on this question by
designing the first ever blind CA for email identities.
Our blind CA validates ownership of an email address
and issues a credential binding that email address to
a public key, but never learns the email address being
used. What’s more, our system achieves this in a legacy-
compatible way, utilizing existing email systems and pro-
ducing X.509 certificates. By combining our blind CA
with Cinderella [18], one can achieve the first anonymous
credential system achieving participation privacy.

The main challenge involves the tension between the
need to validate an identity while not learning it. We
resolve this tension using what we call an anonymous
proof of account ownership (PAO). Consider an email
provider, such as Gmail, a verifier (the blind CA), and the
prover that owns an email account with the provider. To
achieve participation privacy, the verifier should be able to
validate ownership of the account by the prover, without
the prover revealing which account and without the email
provider learning that the prover is participating.

To do this, we introduce a more general tool called
secure channel injection (SCI). An SCI protocol allows
the prover and verifier to jointly generate a sequence of
encrypted messages sent to a server, with the ability of the
verifier to insert a private message at a designated point in
the sequence. In our proof of ownership context, the server
is run by the email provider, and the injected message will
be a random challenge inserted into an email. To complete
the proof of ownership, the prover can later retrieve the
challenge from the service using a separate connection,
and send the challenge back to the verifier.

Our SCI construction targets protocols running over
TLS, which is the most widely used secure channel pro-
tocol. Recall that TLS consists of a handshake that es-
tablishes a shared secret, and then encrypts application-
layer messages (SMTP in our context) using a record layer
protocol that uses an authenticated encryption scheme. We
design efficient, special-purpose secure two-party com-
putation protocols that allow the prover and verifier to
efficiently compute a TLS session with the server. For
most of the session, the verifier acts as a simple TCP-
layer proxy that forwards messages back and forth. The
prover negotiates a TLS session key directly with the
destination server. At some point in the stream, however,



the verifier must inject a message, and here the prover
(which has the session key) and the verifier (which has the
secret challenge to inject) perform an interactive protocol
to compute the record layer encryption of the message. By
exploiting the cryptographic structure of the TLS record
layer encryption scheme, we securely achieve this using a
protocol whose most expensive step is a two-party secure
computation protocol [60] on a circuit consisting of a
small number of AES computations (plus exclusive-or
operations). Whereas direct use of secure computation
to perform the entire record layer construction would
be expensive, our approach is demonstrably feasible and
leverages recent advances in two-party secure computa-
tion of AES. Unlike Multi-context TLS [44], our protocol
can modify TLS sessions in a fully legacy-compatible
way, without changing existing network infrastructures
and collaborations with network providers.

Our SCI-based anonymous PAO protocol can addition-
ally output a cryptographic commitment to the prover’s
identity (the email account name). The prover can then
construct an X.509 certificate for a public key of their
choosing, hash it, and prove in zero-knowledge to the
verifier that the identity field of the X.509 matches the
email account name in the commitment. We use the
ZKBoo framework for this step [27]. If the proof verifies,
then the verifier obliviously signs the hash. In this way,
the verifier never learns the identity but provides the
certificate only should the prover have a valid email
account with the agreed-upon service.

We provide formal analysis of the protocols underlying
our blind CA, showing security holds even for malicious
provers or malicious verifiers, and for honest-but-curious
email services. Security of the final blind CA protocol
relies on some nuances of SMTP implementations, which
we discuss in the body and verify empirically.

We implement a prototype and test it with various
SMTP servers, showing that it is fast enough for deploy-
ment. (We plan to make our implementation public and
open source.) Running the prover on a laptop connected
via a public wireless network to a verifier running on EC2,
the median time to complete an SCI-based anonymous
PAO is 760 milliseconds. More performance results are
given in the body.

In summary, our contributions include the following:
• We introduce the notion of secure channel injection and

show how to realize it efficiently in the case of TLS.
Our techniques can be adapted to other secure channels
such as SSH and IPsec.
• We use SCI to build anonymous proof of account

ownership protocols for SMTP over TLS.
• We show how to combine all this to construct a blind

CA that generates certificates binding a public key to
an account after verifying ownership of the account, all
without having the CA learn which account was used.

By combining our blind CA with Cinderella, we achieve
the first participation-private anonymous credential sys-
tem. Our results therefore provide a foundation for privacy
tools in contexts where revealing usage of privacy tools
can be dangerous. Finally, we note that there is nothing
fundamental about our use of email for identities. Future
work could use our techniques to build blind CAs for other
types of identities, e.g., accounts on popular web services.

II. BACKGROUND AND OVERVIEW

We show how to build a blind CA service that can verify
a user’s ownership of an account, and then sign an X.509
certificate binding the user’s public key to the account—
without the CA learning the account or public key of the
user. Our blind CA is based on an anonymous proof-of-
account ownership (PAO) for email. We proceed with an
overview of a standard PAO, and then with a high-level
idea underlying our construction of an anonymous PAO.

Proofs of account ownership. Proofs of email ownership
are a primary form of authentication on the web today and
form a backstop in case of loss of other credentials (e.g.,
a forgotten password). A conventional proof of email
ownership works as follows. The alleged owner of an
email address, say alice@domain.com, is who we
will refer to as the prover. The prover tells a verifier her
email address, and in response the verifier challenges her
by sending to alice@domain.com an email contain-
ing a random, unpredictable challenge. The prover must
recover this challenge and submit it back to the verifier.
If successful, the verifier is convinced that the prover
can, indeed, access the account and presumably owns it.
(Of course it could be anyone with access to the email
account, including rogue insider admins or those who
have compromised the account credentials.) See Figure 1
for an illustration. Email is one example of a broader
class of account ownership challenge-response protocols.
Ownership of a domain name is often proven by having
the owner set a field of the DNS record to a challenge
value supplied by a verifier. Ownership of websites can
be proven by adding a webpage that contains a challenge
value, and similar approaches work with Twitter and
Facebook accounts [35]. Common to all proofs of account
ownership is the fact that the verifier learns the identity of
the prover.

Public-key registration. Proofs of account ownership
have become increasingly used by certificate authorities
(CAs) to verify ownership of an identity when registering
a public key in a public-key infrastructure (PKI). One
example is the Let’s Encrypt service [34], which provides
free TLS certificates to users that can prove ownership of
the domain via a DNS proof of ownership or web page
proof of ownership. Keybase.io signs PGP keys based
on proofs of ownership of social media accounts [35].



(a) Proof of account ownership:
(1) The prover wishes to prove the verifier that she is the owner
of alice@domain.com; (2) The verifier interacts with the service
domain.com, and sends an email to alice@domain.com with
some unpredictable challenge; (3) The prover accesses her account
at domain.com and extracts the challenge; (4) The prover sends
the challenge to the verifier, proving ownership of the account
alice@domain.com.

(b) Anonymous proof of account ownership:
(1) The prover wishes to prove the verifier that she is some eligible
user of domain.com without revealing her identity; (2) Secure channel
injection: the prover sends an email from alice@domain.com to
some other email account she owns; the verifier sees that the interaction
is with domain.com and injects a challenge into this email at some
designated point; (3) The prover accesses her other email account and
extracts the challenge; (4) The prover sends the challenge to the verifier,
proving ownership of some account in domain.com.

Fig. 1: A regular proof of account ownership versus our anonymous proof of account ownership. P is the prover, S is the email server of
domain.com, and V is the verifier. The black circles represent challenges.

Traditional CAs also need to do PAOs, e.g., proof owner-
ship of the administrative email of the domain, to validate
one’s ownership of a domain, before issuing a certificate
binding a public key to the domain. In these contexts,
the user sends her identity and public key to the CA,
the latter invokes a proof of ownership protocol, and if
the proof verifies then the CA provides the user with an
appropriate certificate. Importantly, the CA in all existing
systems learns the identity of the user.

Anonymous proofs of account ownership. The con-
ventional protocols discussed so far reveal to the verifier
the identity of the account owner. Sometimes revealing
the specific identity is important for security, for example
if one needs to log users and detect fraudulent requests.
But in some settings the provers may be unwilling to
reveal their identities. In the end-to-end encryption set-
ting, privacy is an often mentioned critique of certificate
transparency mechanisms like CONIKS [42]. Existing
anonymous credential systems might seem to solve this
problem, but in fact current systems rely on a trusted
third party (TTP) to perform identity checks (via con-
ventional PAOs) and distribute pseudonyms to users. The
pseudonym can be used to request a certificate from a
CA, who checks the legitimacy of the pseudonym with
the TTP [6, 12, 32, 48, 49]. However, these systems are
vulnerable if the TTP misbehaves.

We show how to obtain an anonymous proof of account
ownership. In our setting, we prove ownership not by
showing the ability to read an email from the account,
but rather by sending an email from the account. An
illustration appears in Figure 1. In more detail, a prover
with an email account alice@domain.com wishes
to prove to some verifier that she owns an account at
the domain without revealing her identity. The prover
would authenticate to her account at that domain, and

Fig. 2: Secure channel injection: The prover (P) interacts with the
service (S) while all the interaction is performed through the proxy of
the verifier (V). At some designated point in the interaction, the proxy
injects a secret message into the encrypted stream (without knowing the
secret key K). This is done using a secure protocol between the prover
and the verifier, while the server is unaware of this injection.

will send an email from her account to some other email
account she owns at some other domain (or even to the
same email address, alice@domain.com). However,
all communication between the prover and the domain
would be performed via a proxy, which would be the
verifier. Using secure computation techniques, we show
how to allow the verifier to inject a secret challenge at
some designated point into this encrypted connection.
We call this subprotocol secure channel injection. Our
techniques guarantee that the prover has no information
about the secret challenge, and the only way to recover
it is by accessing the recipient email account. To prove
ownership, the prover accesses her other email account,
extracts the challenge and presents it to the verifier. A
diagram of secure-channel injection appears in Figure 2.

Secure channel injection. To build an anonymous PAO
and blind CA, we will develop an underlying primitive
that we refer to as secure channel injection (SCI). The idea
is to allow a party to inject a (relatively) small amount of
information into a secure connection between a client and
server. In the ownership proof context, the client will be
the prover, the server will be the authenticated service, and
the verifier will be the party injecting data. In our realiza-
tions the latter will end up being a specialized proxy that



relays traffic between the prover and the service. While we
explore use of SCI protocols in the context of anonymous
PAOs, future work might surface other applications.

General tools for secure computation enable computing
SCI for any ciphersuite of TLS, but could be expensive.
We demonstrate efficient realization of secure channel
injections for TLS with two ciphersuites: (1) TLS with
cipher block chaining mode of operation (AES-CBC) with
HMAC-SHA256 authentication, and (2) AES with Galois
counter mode (AES-GCM). In the first case, we construct
a protocol whose most expensive step is a two-party
secure computation protocol [60] on a circuit consisting
of a small number of AES computations (plus exclusive-
or operations). Our approach is demonstrably feasible and
leverages all of the recent advancements in two-party
secure protocol construction for computing AES. In the
second case we construct a protocol which the only expen-
sive operation is an oblivious polynomial evaluation [26,
29, 30, 43] needed for computing the authentication data,
and no secure computation of AES is necessary. We prove
security of our protocols in the random oracle model.

In both cases the role of the proxy is constrained —
our protocols ensure that even an actively malicious proxy
cannot mount an arbitrary man-in-the-middle attack, but
only are able to insert a constrained amount of data.

In the next couple of sections we go through the details
of our approach. We first present secure-channel injection
protocols (§III) and how to realize them for TLS (§IV).
We then show how to use SCI to build anonymous PAOs
for email and, ultimately, our blind CA for email (§V).

Use cases. For concreteness, we provide example use
cases for which blind CAs may be useful:

(1) Consider when the organization is a bank and the
prover is a whistleblower that must prove to a reporter
her status as an insider without revealing her identity.
The bank is unlikely to aid the user by setting up an
anonymous credential system. Using blind CA, the bank
is unaware that it is being used as an identity provider.

(2) Cinderella, an anonymous credential system that
can perform X.509 certificate verification via zero-
knowledge proofs, can be used with anonymous voting
services to hide voters’ identities (i.e., subject id in
the X.509 certificate) [18]. However, it assumes each
voter already has a unique X.509-compatible, personal
certificate, and uses a voter’s public key and other
public information to generate a pseudonym for the
voter. Once CAs cooperate with the voting services,
it’s easy to recover the true identity of a voter under
a given pseudonym. If one used a blind CA instead,
then identities are never learned, let alone collected, by
the CA (assuming no collusion with the email service).

III. SECURE CHANNEL INJECTION

A secure channel injection (SCI) protocol is a
three-party protocol between a client, a proxy, and
a server, parameterized by a message template
Mt = (|Mp

t |, |M∗|, |Ms
t |), which can be thought of

as a “placeholder” for actual messages. The client holds
as input a message prefix Mp

t ∈ {0, 1}|M
p
t | and a

message suffix Ms
t ∈ {0, 1}

|Ms
t |, communicates with

the server, where the proxy is interested in “injecting”
a random message/challenge M∗ ∈ {0, 1}|M

∗| into that
interaction. We follow the standard definition for secure
computation in the malicious adversarial model (e.g.,
[13,28]). The secure channel injection protocol computes
Functionality 1.

Functionality 1: Message Injection (parameterized with
a message template: Mt = (|Mp

t |, |M∗|, |Ms
t |))

• Input: The client holds some input prefix message Mp
t ∈

{0, 1}|M
p
t | and suffix Ms

t ∈ {0, 1}|M
s
t |. The proxy holds

some message M∗ ∈ {0, 1}|M
∗| that was chosen from

some high-entropy source. The server has no input.
• Output: The server outputs (Mp

t ,M
∗,Ms

t ). The proxy
and the client have no output.

The following simple protocol computes the afore-
mentioned functionality: The proxy chooses a message
M∗ uniformly at random, and both client and proxy just
transmit their messages to the server. However, we are
interested in protocols that compute this functionality but
also satisfy the following two properties:
• First, we are interested in protocols where the code of

the server is already “fixed”, and the messages that the
client and the proxy send to the server must match some
specific syntax. Specifically, the protocol is additionally
parameterized by a secure channel protocol SC =
(SCCl,SCS). The code of the server in the secure
channel injected protocol is fixed to SCS ,1 modeling
the fact that the proxy has to “inject” a message into
an existing secure channel communication SC between
the client and the server.
• Second, the network setting is such that there is no di-

rect communication channel between the client and the
server. All messages between these parties are delivered
through the proxy. In particular, this already requires
the client to encrypt its messages as the proxy should
not learn any information about Mp

t ,M
s
t (besides the

already known message template, i.e., known sizes).

For the purposes of description it suffices to give a sim-
plified view of secure channel (SC) protocols. Let SC =
(SCCl,SCS) consist of a key exchange phase followed

1The only exception is that, in order to have a meaningful definition
of the problem, we change the code of the server, letting it output
the decrypted transmitted messages M1, . . . ,Mm in case of successful
authentication. If the authentication fails, it outputs ⊥.



by transmitting r ciphertexts E(K,M1), . . . , E(K,Mr)
from the client to the server encrypted under a symmetric
encryption algorithm E and session key K, regardless
of whether it is stateful or not. Recall that we follow
the standard definition for secure computation in the ma-
licious adversarial model (e.g., [13, 28]), for analyzing
whether a protocol securely realizes a given functionality.
This leads us to the following definition of a secure
channel injection:

Definition 2 (Secure Channel Injection). Let SC =
(SCCl,SCS) be a secure channel protocol between a
client and a server. We say that a three party protocol
SCI = (ΠCl,ΠPr,ΠS) is a secure channel injection
protocol for SC, if the following conditions hold: (1) SCI
securely realizes Functionality 1, and (2) ΠS = SCS .

Security properties. As for condition (1) in Definition 2,
we require that security holds when either the client or
the proxy is malicious (meaning, it can deviate arbitrarily
from the protocol specification), or the server is an honest-
but-curious adversary, meaning it might try to violate
security by inspecting the sequence of packets sent to
and from it and the sequence of plaintext messages, but
it won’t maliciously deviate from the protocol speci-
fication. Our definition guarantees the following basic
security goals:
(1) Injection secrecy: The client cannot learn M∗ during

the protocol interaction.2

(2) Transcript privacy: The proxy does not learn anything
about messages other than M∗.

(3) Transcript integrity: The proxy should not be able to
modify parts of the message transcript besides M∗.

(4) Server obliviousness: Condition (2) in Definition 2
guarantees that the server cannot distinguish an SCI
execution from a standard execution of the underlying
SC protocol with the client.

We assume that the IP address of the proxy does not, by
itself, suffice to violate server obliviousness. We empha-
size that as opposed to the server (which is oblivious to
the fact that it is not participating in a standard execution
of the underlying SC protocol with the client), the client is
well-aware that this is not a standard execution. In fact, the
client intentionally collaborates with the proxy in order
to enable it to inject the secret message M∗, and the two
parties together compute a valid record that contains the
injected message. The client and the proxy together can
therefore be viewed as a single unified client interacting
with the server in a standard secure channel protocol.

Network assumptions. As mentioned before, we assume
that the client and the server cannot communicate directly,

2In our applications of SCI, the client will eventually learn M∗ by
retrieving it later from the server. But it should not be learned before.

and their communication is delivered through the proxy.
We also assume each party can only observe their local
network traffic. That is, the server cannot access the
network transcripts between the client and the proxy
(otherwise, we can never achieve server obliviousness),
and the client cannot access the network transcripts be-
tween the proxy and the server (otherwise, we cannot
simultaneously achieve transcript injection secrecy with
server obliviousness).

We will not consider attackers who are capable of ma-
nipulating network routing and injecting spoofed packets.
This rules that the situation that the client bypasses the
proxy and spoofs and session between the proxy and the
server. Other types of attacks that are not directly related
to the goals of adversaries as mentioned above, such as
denial-of-service attacks, are not taken into account. We
also don’t yet consider implementation-specific attacks
such as vulnerabilities in the proxy software.

Relaxations of Functionality 1. For conceptual sim-
plicity, we presented Functionality 1 for the most simpli-
fied settings. In order to design more efficient protocols,
however, a somewhat more complicated functionality is
necessary. In a nutshell, the modifications allow the proxy
to learn some leakage onMp

t ,M
s
t (such as known headers

or part of the messages the client does not have to hide).
For the AES-GCM SCI protocol (see Appendix B) the
ideal functionality additional allows the client to “shift”
the injected message M∗ by sending the trusted party
some message ∆ (and letting the output of the server be
(Mp

t ,M
∗+ ∆,Ms

t )). This suffices for our application as
this functionality satisfies injection secrecy.

We now turn to design cryptographic protocols for
which we can prove that they realize the SCI ideal func-
tionality (without relying on any trusted third party).

IV. SCI FOR TLS

We focus in this paper on TLS as the secure chan-
nel. Using common MPC techniques, such as Yao’s pro-
tocol [60] or fully homomorphic encryption [25], ev-
ery secure channel protocol can be converted into an
SCI. However, these general techniques would be expen-
sive due to the complexity of the TLS record construc-
tion, which involves computations for HMAC, AES, and
record padding. We can do better by taking advantage of
the way TLS encryption works. While there are several
options supported in the wild, we focus on the currently
commonly used ones:

(1) AES using CBC with HMAC-SHA-256. This mode
is widely used in TLS 1.1 and 1.2, and we show
how to build for it an SCI in Section IV-A. Our
protocol requires general-purpose MPC on just a few
invocations of AES, making it fast.
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Fig. 3: The MAC-then-encrypt construction in TLS (version > 1.1).
HDR is a 40-bit TLS record header and SQN is a 64-bit sequence
number. IV has a fixed size of 128-bits. The size of the HMAC tag
depends on the hash functions being used in HMAC. Before AES
encryption, the record will be padded to a multiple of 128 bits [21, 22].

(2) AES with Galois / Counter mode (AES-GCM). We
provide the SCI protocol in Appendix B. Our protocol
relies on oblivious polynomial evaluation.

In the sequel, we focus on AES using CBC with HMAC-
SHA-256 (Section IV-A).

A. TLS with AES-CBC and HMAC-SHA256

The TLS record is described in Figure 3. We need
to design a protocol that allows two parties to jointly
compute such a TLS record, where the client provides
the TLS session keys and part of the message, and the
proxy provides the injected message. We first introduce
two sub-protocols called 2P-HMAC and 2P-CBC, and
design SCI-TLS based on the two protocols. In a nutshell,
2P-HMAC boils down to submitting two partial tags, one
from the client to the proxy and one from the proxy to
the client, and its overhead is minor. In 2P-CBC, the
client computes the AES ciphertexts of Mp

t ,M
s
t locally,

and the parties engage in a secure protocol for computing
AES on the blocks of M∗ (where the proxy inputs the
blocks of M∗ and the client inputs the key, i.e., we realize
an oblivious PRF). We fully specify the protocols and
then analyze the security of SCI-TLS. We remark that
we do not formalize the ideal counterparts of 2P-HMAC
and 2P-CBC, and we analyze the security of SCI-TLS
protocol as a whole. We divide the protocol into these
subprotocols just for expositional clarity.

Assume the client Cl holds keys Khmac and Kaes as
well as an injection template prefix Mp

t and suffix Ms
t .

A proxy holds the injected message M∗. We will show
how they can jointly compute HMAC with the first key
over Mp

t ‖M∗‖Ms
t and CBC mode with the second key

over the same composed message. We denote the HMAC
chunk size by d (in bits), and assume CBC mode uses
a blockcipher whose block size in bits we denote by n.
Looking ahead, we will require that Mp

t and M∗ each
have length a multiple of d (after headers are prepended)
during the HMAC computation and n during CBC.

2P-HMAC. Recall that HMAC is a pseudorandom func-
tion (PRF) constructed on top of a hash function that we
denote H . We assume that H is a Merkle-Damgård based

hash function, which aligns with the hashes used in TLS.3

We take advantage of the fact that one can outsource
computation of HMAC over portions of messages without
revealing other parts of the message or the key.

Let f : {0, 1}v×{0, 1}d → {0, 1}v be the compression
function underlying H . It accepts messages of length d
bits and a string called the chaining variable of length v
bits. It outputs a v-bit value. For any string S ∈ {0, 1}v
and string M = M1, . . . ,Mm where each Mi is d
bits long, we let f+(S,M) be defined recursively by
Si = f(Si−1,Mi) for i = 1 to m and S0 = S. Finally
f+(S,M) = Sm. For the hash functions of interest one
appends to a message M a padding string PadH|M | so
that M‖PadH|M | is a multiple of d bits. For SHA-256 for
example PadH` = 10r‖〈`〉64 where the last part is a 64-
bit encoding of ` and r is defined to produce enough zeros
to make ` + r + 65 a multiple of d. Finally the full hash
is defined as H(M) = f+(IV,M‖PadH|M |).

HMAC on a key K and message M is built using H
as follows:
HMAC(K,M) = H((K ⊕ opad) ‖H((K ⊕ ipad)‖M))

where ipad and opad are the inner and outer padding
constants each of length d bits [38]. In our usage |K|< d,
so one first pads it with zero bits to get a d-bit string
before applying the pad constants. To perform a joint
computation of HMAC(Khmac,M

p
t ‖M∗‖Ms

t ) the
parties follow the protocol detailed in Protocol 3.
We denote an execution of this protocol by
2P-HMAC((Khmac,M

p
t ,M

s
t ),M∗).

Protocol 3: 2P-HMAC((Khmac,M
p
t ,M

s
t ),M∗)

Input: The client holds Khmac, Mp
t = (M1, . . . ,M`),

and Ms
t = (M`+k+1, . . . ,Mm). The proxy holds M∗ =

(M`+1, . . . ,M`+k) where each Mi ∈ {0, 1}d.
The protocol:
(1) The client computes s0 = f(IV,Khmac ⊕ ipad), and

for every i = 1, . . . , `, it computes si = f(si−1,Mi).
Send s` to the proxy.

(2) The proxy computes si = f(si−1,Mi) for i = ` +
1, . . . , `+ k. Send s`+k to the client.

(3) The client proceeds si = f(si−1,Mi) for all i =
` + k + 1, . . . ,m, and then s∗ = f(sm,PadH|M|) =
H((Khmac ⊕ opad)||M).

Output: The client outputs T = H((Khmac ⊕ opad)‖s∗).

2P-CBC. We now turn to how to jointly compute a CBC
encryption over Mp

t ‖M∗‖Ms
t . Since we are working now

with n-bit strings, we let Mp
t = (P1, . . . , Pq), M∗ =

(Pq+1, . . . , Pq+r), and Ms
t = (Pq+r+1, . . . , Pt), where

each Pi is an n-bit block.
The CBC mode on message M = (P1, . . . , Pt) is

defined by choosing a random n-bit C0 = IV and

3Our protocol here will not work with SHA-3 whose
compression function is not secure (e.g, Keccak, who uses a
sponge construction [7]). This is related to so-called mid-game
attacks [14].



computing Ci = AESKaes
(Ci−1, Pi) for every i =

1, . . . , t, and outputting C0, . . . , Ct. If Pt is not a multiple
of n, then some PadC|M | is added to the message to
ensure that M is a multiple of n bits in length. Our
2P-CBC protocol is described in Protocol 4. In order to
compute the ciphertexts, the two parties use a general-
purpose MPC protocol to compute AESKaes

(P ′i ) where
the client inputs Kaes, the proxy inputs some block P ′i ,
and receives ciphertext Ci. We denote this functionality
as FAES.

Protocol 4: 2P-CBC((Kaes,M
p
t ,M

s
t ),M∗) (in the FAES-

hybrid model)
Input: The client holdsKaes, messagesMp

t = (P1, . . . , Pq),
and Ms

t = (Pq+r+1, . . . , Pt), the proxy holds M∗ =
(Pq+1, . . . , Pq+r), where each Pi ∈ {0, 1}n.
The protocol:
(1) The client sets C0 = IV , and computes Ci =

AESKaes(Ci−1 ⊕ Pi) for every i = 1, . . . , q. It sends
C0, . . . , Cq to the proxy.

(2) For i = q + 1, . . . , q + r, the client and the proxy
FAES-functionality for computing AESKaes(Ci−1⊕Pi),
where the client inputs the key and the proxy inputs the
message. The proxy receives as outputs Cq+1, . . . , Cq+r ,
and sends Cq+r to the client.

(3) The client proceeds to compute Ci = AESKaes(Ci−1 ⊕
Mi) for every i = q + r + 1, . . . , t and sends all the
ciphertext to the proxy.

Output: The proxy outputs C0, . . . , Ct.

We assume that |M∗| > 2n (i.e., r > 2). If r = 1, the
proxy cannot send Cp+1 back to the client because the
client can easily recover M∗ based on her knowledge of
Cp andKaes. In this case, we can alternatively require that
|Ms

t |= 0; that is, |M∗| is the last block of the plaintext.

The SCI protocol. We are now in a position to describe
our solution for SCI with TLS where the proxy wants
to inject a message at some designated point into the
stream of encrypted client-to-server message data. Let
Q1, . . . , Q

∗
u, . . . , Qv be the sequence of TLS plaintext

fragments sent from the client to the server in sepa-
rate record layer encryptions, with Q∗u representing the
fragment within which the proxy will inject its private
message M∗.

Recall that HMAC-SHA256 works on blocks of size
d = 512 bits (64 bytes) and AES is on blocks of size
n = 128 bits. Moreover, we recall that SQN and HDR (of
total length 40 + 64 = 104 bits) should be added to the
message when computing the HMAC, whereas these are
not included when encrypting with CBC (see Figure 3).

We consider the simpler case in which |M∗| = 256
bits (i.e., |M∗| = 2n, as in Protocol 4). We let
Mp

t = (Mp1

t ,Mp2

t ) where |Mp1

t |= 408 and |Mp2

t |= 232
bits. Moreover, we let Ms

t = (Ms1
t ,Ms2

t ) where
|Ms1

t | = 24 bits and Ms2
t = 104 bits. The client

512 (104+408) 512 (232+256+24) 104

640 256 (2 blocks)

2P-HMAC

2P-CBC M∗

Ms2
tSQN+HDR+Mp1

t

Mp
t

Mp2

t +M∗ +Ms1
t

Ms
t + T

Fig. 4: An example of injecting a 256-bit M∗. The messages with
dots are input by the proxy, and the other (portions of) messages are
provided by the client. The numbers are message sizes in bits.

sends Mp2

t and Ms1
t to the proxy4. As such, the blocks

(SQN,HDR,Mp1

t ) and (Mp2

t ,M∗,Ms1
t ) are each

multiplies of d and |Mp
t | = |(M

p1

t ,Mp2

t )| and |M∗|are
each multiples of n. See Figure 4.

SCI-TLS proceeds by having the proxy act as a
TCP-layer proxy for the TLS handshake between
the client and the server and for the first u− 1 TLS
record layer fragments. Let the client-to-server session
keys be Khmac for HMAC and Kaes for AES. To
send Q∗u the client constructs the message prefix
SQN‖HDR‖Mp1

t . Then the client and the proxy
execute 2P-HMAC((Khmac, SQN‖HDR‖Mp1

t ,Ms2
t ),

Mp2

t ‖M∗‖M
s1
t ) to compute the HMAC tag T . Next,

they execute 2P-CBC((Kaes,M
p
t ,M

s
t ‖T ),M∗) to

jointly compute the record layer ciphertext if |M∗| is
greater than 128 bits (16 bytes).

A special case is when the proxy wants to inject less
than 256 bits. The minimal amount that our approach
allows is 152 bits. This case somewhat corresponds to the
r = 1 setting in Protocol 4, for which, as we mentioned
before, the proxy cannot send back the ciphertext to
the client. We can handle this case if |Ms

t |= 0, as we
elaborate on in the full version of this paper.

We model the internal function f of the hash function
H as a random oracle, and AES as an ideal cipher, and
prove the following Theorem in Appendix C1:

Theorem 5. The above protocol is a secure channel
injection protocol for TLS with AES-CBC and HMAC-
SHA-256 (i.e., satisfies Definition 2), assuming that f is
a random oracle and AES is an ideal cipher.

AES-GCM. In Appendix B we demonstrate how to
implement an efficient secure computation protocol
for AES-GCM. In CBC mode with HMAC, we had a
minor overhead for jointly computing the authentication
tag and the expensive part was the joint computation
of ciphertexts corresponding to M∗. In AES-GCM,
the situation is the opposite. Here, the client chooses
a random IV and uses counter mode, namely, all
messages M1, . . . ,Mt are encrypted using the “key
stream” AESK(IV + 1), . . . ,AESK(IV + t). The client
can simply send the portion of the key stream that is
associated with the injected message of the proxy, and
no secure computation of AES is needed. However, the

4That is, this is the leakage the proxy receives regarding the input of
the client.



authentication data involves evaluation of a polynomial
that is not known to the client, on a point that is
known only to the client. We therefore use oblivious
polynomial evaluation [29, 30, 43] to perform this part of
the computation. See full details in Appendix B.

Other secure channels. We focused above on TLS using
common record layer encryption schemes. Our techniques
can be adapted to some other protocols and authenticated
encryption schemes, such as Encrypt-then-MAC (e.g.,
IPsec) and Encrypt-and-MAC (e.g., SSH). There are a
number of in-use authenticated encryption schemes such
as ChaCha20/Poly1305 [47] and CCM [41] for which we
have not yet explored how to perform efficient SCI. Com-
mon to them is the use of Encrypt-then-MAC type modes
with a “weaker” MAC such as CBC-MAC. Theoretically,
constructing SCI for these secure channels is always
possible. We leave constructing efficient SCI protocols for
these schemes to future work.

V. ANONYMOUS PAOS AND BLIND CERTIFICATE
AUTHORITIES

We introduce two applications of SCI in this section:
anonymous proofs of account ownership (PAOs) and blind
certificate authorities (blind CAs). We focus on SMTP
as the application layer protocol. We introduce a basic
SMTP-STARTTLS workflow, our requirements of SMTP
implementations, and our application design, and briefly
discuss potential application-specific attacks and the cor-
responding defenses towards the end of this section.

A. SMTP with STARTTLS

We first briefly discuss the workflow of sending an
email in SMTP-STARTTLS as our application is inti-
mately tied to the workings of SMTP implementations.
We focus on PLAIN as the target authentication mecha-
nism, which is the most widely used authentication mech-
anism [33]. The client first sends a STARTTLS command
to initialize a TLS-protected SMTP session after checking
the SMTP server’s support for TLS. In the session, the
client sends the following commands in order: AUTH
PLAIN account_name password (authentication),
MAIL and RCPT (setting the sender/recipient addresses),
DATA (notifying the begin of email transactions), the
email content, and finally QUIT (closing the session).
The AUTH, MAIL, RCPT, and DATA are mandatory and
must be sent in order according to RFC [37], while other
commands are optional. The client needs to wait for the
server’s response to a command before sending the next
one, unless the PIPELINING extension, which allows
the client to send several commands in a batch, is enabled
by the server. But according to RFC [37], the server
should respond to each command individually.

B. System Assumptions

The security of anonymous PAOs and blind CAs rely on
the security of SCI. So, they have the same threat model
and underlying assumptions as SCI (e.g., parties do not
collude). See §III and §IV. Besides, we assume that the
challenges generated during anonymous PAOs will not be
leaked by the prover intentionally or unintentionally. And,
the certificate generated by the blind CA should contain
sufficient entropy to rule out brute-force inversion of the
certificate hash, which is revealed to the CA. This require-
ment is easily satisfied as long as the certificate includes
the prover’s public key. We also assume that the prover
might communicate with the verifier (the CA) through an
anonymous or pseudonymous channel, such as Tor and
public wireless networks, to achieve IP anonymity. The
verifier must be associated with a valid certificate that can
be used to identify the verifier.

We assume the target STMP server supports the fol-
lowing property: during one SMTP session, only one
email, with a secret challenge injected in the designated
location, will be generated and sent from the authenticated
account, and each TLS message sent from the prover
contains exactly one SMTP command as specified by
our protocols. Thus, the SMTP server should meet the
following requirements:

(1) Auth: The server should use correctly configured
SMTPS (e.g., using valid TLS certificate and being con-
figured as a closed relay) and only authenticated users
with correct sender addresses can send emails [23,40,59].
(2) NoEcho: the server should not echo back received
commands to the client, which would immediately break
injection secrecy. (3) NoPipeline: the server should not
support the PIPELINING extension; or (4) RFCCom-
pliant: If the server does not satisfy NoPipeline, the
server must be RFC-compliant in terms of how it responds
to pipelined commands, as described in §V-A. These
requirements help anonymous PAOs and blind CAs to
achieve security (See §V-E).

To understand how stringent these requirements are, we
investigated the behavior of 150 popular SMTP servers
(supporting STARTTLS) from public lists available
on the Internet [2, 24]. Overall, we found 112 SMTP
servers (75% of those examined) meet our requirements
and can be used for anonymous PAOs and blind CAs,
including popular services that have a large user base:
Gmail, Outlook, Hotmail, Mail.com, etc.

C. Anonymous PAO for SMTP

Using anonymous PAO, a prover (who owns an email
account alice@domain.com that is administered by
a service domain.com) can prove to the verifier that
she owns an email account from domain.com, without
disclosing the exact email address. Unlike conventional
PAOs in which a verifier sends a challenge to a prover’s
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Fig. 5: Technical flows of (a) SMTP-based anonymous PAO and (b)
blind CA. For blind CA: 1 The CA saves the first message as the
commitment; 2 The CA and the prover use anonymous PAO to inject
a challenge; 3 The CA and the prover run a zero-knowledge protocol
to generate a legitimate X.509 certificate.

account, our anonymous PAO realizations work in the
opposite direction. The setup is shown in Figure 5: the
prover runs a modified SMTP client, and uses SMTP-
STARTTLS to interact with the private SMTP server of
domain.com via a proxy managed by the verifier using
the following protocol:

(1) The verifier (i.e., the proxy in the SCI) determines
the address of smtp.domain.com, e.g., via DNS,
and checks whether the server satisfies the aforemen-
tioned requirements.

(2) The prover (i.e., the client in the SCI) sends an email
using the SMTP server, to any location only accessi-
ble to the prover, via the verifier. Most of the SMTP
messages are sent in separate TLS fragments. For the
body of the email the client and proxy use a shared
template that specifies the location of the challenge in
the body and its format (e.g., the challenge should be
a certain-length string of random ASCII characters).

(3) The proxy injects a challenge into that email via
SCI. The TLS fragment containing the email body
is handled via our SCI-TLS injection protocol; this
is the Q∗u message using the notation from §IV. The
resulting TLS record will be sent to the server by the
proxy, and then the client can finish the session.

(4) The client will later retrieve the email (via an
independent and standard connection to its email
provider), and extract the challenge.

(5) The client will verify the verifier’s identity (e.g,
proxy’s certificate) and send the challenge to
the verifier to complete proof. Assuming only
authenticated users can use the server to send emails,
this will prove ownership of an account.

Challenge steganography. Recall that one of our se-
curity goals is service obliviousness. This is not always
important, but could be in some settings. Assuming that
SCI-TLS is server oblivious, meaning it is not uniquely

identifiable as such, what remains is to ensure that injected
messages are not detectable as PAOs. This is fundamen-
tally a task of steganography, but we are aided here by the
fact that challenges can be relatively short and the rest of
the message can even be hand-crafted.

We designed various example message templates that
can be used for hiding a challenge. For example, the
message template can be an email that contains a public
key or encrypted files (PDF, zip file, etc.); It is easy to
embed a short random-string challenge in the template,
by simply replacing a portion of the random string with
the challenge.

D. Blind Certificate Authorities

We now show how to extend our SMTP-based anony-
mous PAO to build a blind certificate authority service.
A blind CA can verify a person’s ownership of an email
account and then sign an X.509 certificate for the user’s
public key. The certificate is mainly for binding the public
key to the email account and serves as a proof of email
account ownership for uses in other privacy-enhancing
systems like Cinderella. Unlike conventional CAs, ours
will be blind: the CA does not learn the user’s identity or
public key.

At a high level, our blind CA implementation works
as follows. (1) The CA runs the SMTP-based anonymous
PAO protocol with the client, but additionally extracts
from the transcript of the protocol execution a crypto-
graphic commitment to the client’s username, alice.
(2) The CA gives the client a certificate template that is
completely filled except for the entries subject (the client’s
username, e.g., alice) and public key. The client fills
in these missing entries, and then sends the hash of this
certificate and a zero-knowledge proof to the CA to prove
that the same username has been used in the commitment
and the certificate. (3) The CA verifies that the proof is
correct, signs the hash using a standard digital signature
scheme and sends it back. The result is that the client
obtains a valid certificate, signed by the CA.

We next elaborate on how to generate a valid commit-
ment during the anonymous PAO, and then describe the
certificate generation procedures.

Anonymous PAO with binding identity. For blind
CA, we need a slightly stronger form of PAO in which
upon acceptance of the statement by the proxy (i.e.,
being convinced that the client is some eligible user of
domain.com), it outputs in addition a cryptographic
commitment to the identity of the client (henceforth, say,
alice). The commitment is hiding (and therefore does
not reveal the identity of alice), but it also binding (and
so it is infeasible to link this interaction with a different
user rather than alice).

Ristenpart et al. show that for several ciphersuites for
TLS, their ciphertexts bind the underlying plaintexts and



can be treated as secure commitments, where the opening
is the keys derived from the handshake phase [50]. Such
a ciphersuite is AES-CBC with HMAC. In our context of
anonymous PAO and SMTP, the encrypted messages that
are being delivered by the verifier (i.e., the proxy) to the
server contain the authentication data of the client such
as username and password. We refer to this information
as the identity of the client, and elaborate how these
ciphertexts bind the identity of the client in the sequel.
Note that [50] demonstrates an attack that breaks the
binding security of AES-GCM, which, however, cannot
be directly applied to blind CA because the attacker
cannot construct arbitrary messages in our setting —
all messages must be semantically meaningful to the
SMTP server. Whether AES-GCM can be used as a secure
commitment in blind CA remains an open question.

Our SMTP client is instructed to only use the
minimum number of commands (AUTH, MAIL, RCPT,
and DATA) to send an email. Each command and
the email content will be sent in one message (i.e.,
TLS fragment). Thus the first message sent, which
is the TLS encryption of the message AUTH PLAIN
[sep]alice[sep]password, will contain the
client’s email account, and the fifth message will be the
email body into which a challenge will be injected. 5

The procedures are shown in Figure 5. The first message
will be taken as the commitment C. The client stores the
opening of the commitment (the associated CBC-HMAC
keys Khmac and Kaes) for late use, The challenge to be
injected is a random string M∗, and the proxy adds C to
a table under the index M∗.

While running the anonymous PAO (with binding iden-
tity), the proxy expects to see exactly five messages (four
commands plus an email) sent from the client, and each
message is followed by exactly one response from the
server (not counting TLS handshake messages and the
cleartext EHLO at the very beginning). It is important that
the proxy aborts after seeing five responses. If it allows
more, an attack that abuses the flexibility in number of
messages arises; see §V-E.

Some servers might require the EHLO after
STARTTLS. The proxy can check this when examining
if the server satisfies the requirements. In this case, the
proxy simply needs to let the client use six messages (with
six responses) to finish the session, and grabs the second
message seen as the commitment.

Certificate generation. The client uses a X.509 certifi-
cate template prepared by the CA to generate a legitimate
X.509 certificate cert, with the subject field being set
to the client’s email account alice and the public key
field being set to the client’s public key pkey. The

5[sep] is a special character defined in [37]. The account and
password are base64 encoded.

other fields (expiration duration, organization, etc.) in the
template are public, and their values will be shared with
the client and be validated by the CA during certificate
generation. The client generates a hash h = H(cert) of its
certificate, and produces a zero-knowledge proof, named
CA proof, that demonstrates (1) her knowledge of the
necessary information (the email account and the public
key) to form a certificate (the hash of which is h); (2) the
knowledge of the underlying message and the opening of
the commitment C, namely the secret keys used during
the PAO session, and the email account and password in
C (which is used to send the challenge M∗); and (3) the
account in the subject field of cert is the same as the
account in C. The private witness of the proof consists
of the email account, the password, pkey, Khmac, and
Kaes. Note that the proxy will not verify the client’s
ownership of the public key in the certificate; this can be
done by the party to whom the certificate is presented.

Assuming the anonymous PAO is successful, the client
can retrieve M∗. It sends M∗, h, as well as the CA proof
to the proxy. The proxy retrieves the commitment C based
on M∗, and verifies the correctness of the proof. Assum-
ing the zero-knowledge proof is accepted by the proxy,
the proxy can be certain that the same email account was
used in the anonymous PAO and the certificate over which
h is computed. Then, the proxy can sign the hash value h
and send the result back to the client.

Anonymous registration. In an anonymous credential
system [6,12,18,32,48], a user can prove to a verifier her
ownership of a credential from a CA without revealing
the credential. Such systems aim at providing anonymity
and unlinkability, i.e., the verifier cannot learn the identity
of the user and multiple uses of the same credential
cannot be linked. However, during registration to obtain a
credential, existing anonymous credential systems all rely
on a trusted third party (the CA) to verify the identity of
the user, for example by performing a conventional PAO.

In settings in which users do not want to reveal that they
have obtained a credential, we can replace the registration
with our blind CA protocol. This allows the user to obtain
a credential attesting to ownership of an email address,
without revealing to any party that a particular user has
obtained the credential.

E. Security Analysis

In this section, we discuss several potential application-
specific attacks.

Client protocol violation. We start by investigating po-
tential security issues arising from abuse of SMTP seman-
tics. A corrupted client may violate the agreed protocol
via extra requests, fragmented commands, or multiple
commands per request, potentially violating injection se-
crecy. For example, the client might send AUTH PLAIN
bob in the first message, followed by AUTH PLAIN



alice, to get a certificate for an account bob when
really only alice is owned; or she might split the AUTH
command into two pieces, and send the second piece and
the MAIL command in one message. But all will require
either more client commands than the number expected
or change the request/response sequence. When the target
server satisfies the requirement NoPipeline or RFCCom-
pliant, the actual number of client commands sent is
visible to the proxy via counting the server’s responses.
Thus if the proxy detects that the client deviates from
the agreed protocol (sending one message but receiving
multiple responses, out-of-order requests/responses, etc.),
the proxy will immediately terminate the session before
the challenge injection.

Proxy injection attacks. The proxy might attempt to vi-
olate transcript privacy and client anonymity by injecting
a message that contains meaningful SMTP commands. A
concrete example is that the proxy can inject a message
like “CRLF.CRLF RCPT:... DATA:...” to initiate a new
message that will be sent to a proxy-controlled email and
learn the email address of the client. This attack can be
ruled out if it suffices to restrict the challenge length to
at most 19 bytes (152 bits): the mandatory fixed bytes
needed (such as CRLFs, command keywords, spaces and
newlines) in the commands would be more than 19 bytes.
Since the client enforces message length (it computes
the hash tag that covers the length), the proxy can’t insert
anything but the agreed upon amount of bytes. Hence, the
attacker will not be able to initiate a new email under this
length restriction. Actually, if the target server satisfies the
requirement NoPipeline, the attack will not work since a
message containing multiple commands will be rejected
by the server.

Impersonation and man-in-the-middle attacks. A ma-
licious proxy might announce itself as a verifier proxy
and attempt a man-in-the-middle attack: forward back and
forth messages between the client and the real verifier’s
proxy. In this case, the client can still finish a PAO. Trans-
action privacy guarantees that the malicious proxy cannot
learn any messages between the client and the real proxy,
but the client may erroneously trust the malicious proxy
as if it were the real proxy and later send her (retrieved)
challenge to it. A malicious proxy might also perform
active man-in-the-middle (MITM) attacks to learn the
plaintext messages sent by the client. These attacks are
easily prevented by having every proxy set up by the
verifier be assigned a certificate, and the client properly
verifies the proxy’s certificate and the server’s certificate
before sending her challenge.

VI. IMPLEMENTATION AND EVALUATION

To demonstrate the feasibility of our SMTP-based PAO
and blind CA, we focus on AES-CBC with HMAC as

a case study. We implemented prototypes of the applica-
tions using open-source libraries.

A. Implementation

PAO prototype implementation. We use tlslite [57]
as the TLS library and modify it to add interfaces for
extracting the key materials being used in a TLS session,
as well as the internal states used in CBC encryption and
SHA-256. We use a Python SMTP library smtplib to
send emails [51]. The client works similarly to a regular
SMTP client and follows the SMTP specification. But
we do modify the client greeting message to hide client
host information.

Malicious secure 2PC. We implement 2-party secure
evaluation of AES that is secure against malicious adver-
saries based on the protocol from Rindal and Rosulek [53]
who optimize their implementation in the offline/online
model. We choose statistical security parameters that offer
2−40 security. Two command-line programs are executed
by the client and the proxy to compute AES blocks.
As in Appendix C, security is not reduced if the proxy
learns the intermediate evaluations of the AES function
in the CBC computation. Thus, we implement our overall
computation by separately computing each AES block in
sequence instead of creating a garbled circuit for the entire
computation. The overall computation circuit for one AES
block contains less than 32,000 boolean gates, 6,800 of
which are AND gates which each require communication
between the parties.

Blind CA implementation. We use the ZKBoo
framework [27] to create multiple non-interactive zero-
knowledge proofs (i.e., ZKBoo proof ) to construct the
CA proof. A CA proof consists of 136 ZKBoo proofs
to achieve a soundness error of roughly 2−80 as in [27].
Although this framework creates a relatively large CA
proof, the operations required to compute the ZKBoo
proofs involve only symmetric primitives (unlike other
techniques for efficient zero-knowledge which require
oblivious transfer). The certificate signature algorithm
is SHA-256. We implement ZKBoo versions of SHA-
256/HMAC-SHA-256 that support inputs of any length
based on the examples provided in [55], and a ZKBoo
version of AES-CBC based on the code in [20]. AES
S-Boxes are implemented based on [8].

B. Evaluation of SMTP-based anonymous PAO

We treat anonymous PAO as a standalone application
and measure the latency of the SCI portion across dif-
ferent settings. We hosted the proxy on an m3.xlarge
instance in the US-East region of Amazon EC2. The
client was running on an Ubuntu 14.04 (64-bit) virtual
machine built by VirtualBox 4.3.26, and was configured
with 8 GB RAM and 4 vCPUs. We used a tool called



Loc1 (No Tor) Loc2 (No Tor) With Tor
2P-HMC 0.01 (0.006) 0.03 (0.01) 0.31 (0.15)

2P-CBC Offline 7.24 (1.65) 8.55 (1.64) 8.10 (3.10)
Online 0.20 (0.06) 0.35 (0.18) 0.36 (0.16)

Total (without offline) 0.76 (0.10) 1.68 (0.11) 4.31 (0.86)
Baseline (SMTP-TLS) 0.31 (0.14) 0.77 (0.45) 3.33 (1.79)

TABLE 6: The median time and standard derivation (in
parentheses) in seconds to complete the 2P-HMAC and
2P-CBC steps, as well as the total PAO and normal
SMTP-TLS session durations across 50 executions in each
location. “With Tor” show the best-performing setting
with Tor being used.

line_profiler [52] to measure the execution time for
each line of code. The sizes of the challenge and message
template are fixed as 152 bits and 512 bytes, respectively.

Latency of SCI. We set up our own SMTP server
(using Postfix 2.9.6, with pipelining disabled) on the same
EC2 instance as our proxy to reduce the network latency
between the proxy and server, in order to maximize the
relative impact of performing SCI. The client ran from
two public wireless networks at different locations (la-
beled as Loc1 and Loc2). And in the best-performing
location, we configured the client to use Tor, either with
the top 3 high-performance routers or randomly selected
routers, to communicate with the proxy. We ran the SMTP
anonymous PAO for 50 rounds under each of the settings.

We report on overhead introduced by SCI in Table 6.
Tor incurs high overheads as one would expect, so we
only report on the best performance. Using public wireless
networks achieves better performance in general. The
most time-consuming part is offline computation in 2P-
CBC; however, it does not rely on inputs and can be
even done before establishing the TLS connection. As
a baseline, it took the client approximately 0.3 s and
3 to send the same email using conventional SMTP-
TLS without and with Tor respectively. Thus the latency
overhead of SCI is relatively small.

Tests with real services. We tested our anonymous
PAO implementation for SMTP against real services using
Loc1 without Tor. The services we chose were Gmail and
two SMTP servers at two universities (call them server1
and server2). For each service, we measured 50 times
the durations of PAO sessions against normal SMTP-TLS
sessions (i.e., the total time spent on issuing a connection,
sending an email, and closing the connection). As a base-
line, the median duration of normal sessions for Gmail,
server1 and server2 were 0.44, 0.93, and 0.79 seconds,
while median duration of PAO sessions (without offline
stage) were 1.01, 1.64, and 1.53 seconds.

Server obliviousness and session duration. An ad-
versary might attempt to detect SCI by inspecting the
SMTP session duration: longer sessions would seemingly
be indicative of using SCI. But actually this alone would

not be a very good detector. We extracted and analyzed
the durations of 8,018 SMTP-STARTTLS sessions from a
dataset of terabytes of packet-level traffic traces collected
from campus networks.6 The distribution of the SMTP
durations is long-tailed, and about 15% of the SMTP
sessions analyzed requiring more than 10 s to complete.
This indicates that attempting to detect SCI in such a
coarse way will have a high false-positive rate. Of course,
there could be more refined detection strategies that take
advantage of, for example, inter-packet timing. We leave
examining other possible traffic analysis techniques to
future work.

C. Evaluation of blind CA

We used a 475-byte X.509 certificate template with a
128-bit account/password and 2048-bit public key in our
testing. The certificate hash is produced by SHA-256.

CA proof generation and verification time. The size of
a ZKBoo proof for a given computation is only decided
by the number of AND/ADD gates in the corresponding
arithmetic circuit. In our implementation, The total num-
ber of AND/ADD gates is 78,064. The resulting ZKBoo
proof size was 625,768 bytes. The average computation
time for generating one ZKBoo proof was 22.3 ms (over
50 rounds): evaluating one AES block and one round of
SHA-256 compression took about 672 us and 586 us on
average. Note that we used a byte-oriented, optimized
algorithm for AES whereas a naive algorithm for SHA-
256, which involves time-consuming copy operations.
The verification time for one ZKBoo proof was about
16.3 ms. Based on the design of ZKBoo, the upper bound
of the verification time can be approximated by the cor-
responding proof generation time (in the same setting).
The size and computation time of a CA proof increase
almost linearly with the number of ZKBoo proofs it has.
It took about 2.9 s and 2.3 s to generate and verify a CA
proof (136 ZKBoo proofs) respectively. The total size of a
CA proof was about 85.1 M. While large, we expect that
generating proofs will be an infrequent task in deploy-
ments. We also believe that with further code optimization
and more advanced ZK techniques, e.g., using Ligero [1],
could significantly improve performance.

In Appendix §A, we estimate the performance impact
of using generic MPC techniques for our applications.

VII. RELATED WORK

Secure multi–party computation. Secure multi-party
computation (MPC) is a technique for multiple parties to
jointly compute a function over all their private inputs,
while no party can learn anything about the private inputs
of the other parties beyond what can be informed from

6We obtained an IRB exemption to collect the traffic. Here we only
used extracted timings from that dataset for our measurements.



the computation’s output [25, 60]. SCI can be seen as a
special-case of MPC, but using general-purpose protocols
would be more expensive and we limit their use. As such
we benefit from the now long literature on making fast
MPC implementations [5, 9, 19, 31].

Group and ring signatures. In a group signature
scheme [17], a trusted party gives credentials to a group
of participants. Any participant can sign a message on
behalf of the entire group, with the privacy guarantee
that no one aside from the trusted party can learn which
member of the group signed the message. This does not
provide the participation privacy we seek: the trusted
party learns all participants.

Ring signatures [54] do not require a trusted third party,
but nevertheless allow signing on behalf of an ad hoc
group of public keys. The public keys, however, must be
certified by traditional means, meaning ring signatures
do not, by themselves, provide the level of participa-
tion privacy we seek. That said, ring signatures give a
weaker form of participation privacy should there be some
deniability in terms of having an ostensible reason for
registration of public keys suitable for ring signatures.

Anonymous credentials. Anonymous credentials sys-
tems allows a user to prove to another party that she has a
valid certificate issued by a given CA, without revealing
the content of the certificate [12,18,32,48]. Some systems
focus on solving privacy issues that arise during certificate
issuance, and allow a user to obtain the signature for a
certificate from a CA without revealing privacy-related
information in the certificate or, in some cases, without
revealing any part of the certificate [6, 49]. However, all
these systems rely on a trusted third party that knows the
user’s identity to perform an initial user registration. Our
PAO protocol and blind CA do not.

Multi-context TLS. Multi-context TLS (mcTLS) [44] is
a modification to TLS that gives on-path middleboxes the
ability to read or write specified contexts (i.e., a portion
of the plaintext messages) of a TLS session. Each context
ends up encrypted under a separate symmetric key, and
so some can be shared with the on-path middleboxes.
This allows injection of messages, but is not backwards
compatible with existing web infrastructure. It also would
not be able to achieve service obliviousness, as the server
must know which contexts were provided by the proxy.

Mailet. Li and Hopper design a secure computation pro-
tocol for TLS GCM and use it to realize a censorship-
circumvention system named Mailet [39]. As in our set-
ting, they have a client and proxy that jointly compute
a TLS record to allow authentication to a remote server
(Twitter in the case of Mailet). While the application
setting and goals are different than ours, one might hope
to use their protocol to achieve SCI. Unfortunately, to
adopt their protocol, the proxy is given the authentication

key, allowing it to violate transcript integrity by forging
messages. Moreover, Mailet relies on ad-hoc counter-
measure that randomize order and length of application-
layer fields, but these won’t work for many protocols
(including SMTP). Finally, while we note that in theory
one can perform anonymous PAOs against authenticated
HTTPS services, significant care would be needed to en-
sure proper understanding of the semantics of the service
in order to guarantee security.

VIII. CONCLUSION

In this work, we built the first blind CA: an authority
that can validate identities and issue certificates without
learning the identity. Blind CAs provide a way to con-
struct anonymous credential systems that ensure partici-
pation privacy, meaning no single system learns of all the
participants. This is important in settings where revealing
the users of a system may already put them at risk.

We introduced a number of first-of-their-kind sub-
protocols in order to build a blind CA. Secure channel
injection (SCI) allows a proxy to inject some (constrained)
plaintext content into a stream of encrypted data from
a client to server. The client learns nothing about the
injected data, while the proxy learns nothing about other
messages sent in the stream. We then showed how SCI
can be used to perform anonymous proofs of account
ownership (PAO) for email accounts. The user can prove
ownership of some email address on a service, but not
reveal to the verifier which one. Our blind CA protocol
checks email ownership via an anonymous PAO, and
then uses zero-knowledge proofs to validate and sign an
X.509 certificate binding the email to a user’s chosen
public key, all without ever learning the exact email or
public key. Our prototype implementation shows that
blind CAs are efficient enough for use in practice, and
that they work with existing SMTP services.
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APPENDIX

A. Using Generic MPC

We give a preliminary analysis of the potential per-
formance impact of using generic MPC to build our
applications.

In the anonymous PAOs, using naive implementation
to compute the TLS record directly for a message of
size 512 bytes would result in a circuit of 0.94 M+ AND
gates (6,800 for one AES operation and 90,825 for one
SHA-256 operation; 32 AES and 8 SHA-256 operations
in total). In contrast, our protocol only performs MPC
for 4 AES operations (27,200 AND gates) as opposed to
32 AES operations in generic MPC. That is, if using the
same MPC technique, computing a TLS record directly
would introduce more than 8x overhead than our protocol.
Moreover, our 2P-HMAC protocol does not need MPC at
all and only transfers 512-bit of data regardless of the size
of the inputs. On the contrary, it already takes the state-of-
the-art MPC techniques 10 ms (9 KB data transferred) in
the online phase to compute SHA-256 with 256-bit inputs
from both parties in the LAN setting, not to mention
HMAC requires two rounds of SHA-256 and 512-byte
input in our application [46, 58].

Recall that during certificate generation one needs to do
at least 6 AES and 8 SHA-256 operations for reconstruct-
ing the commitment and generating the certificate hash.
With naive implementation, such process would result in
a circuit of (roughly) 0.95 M+ AND gates. And, using
the technique from [58], the total data (including all the
phases) that needs to sent from the prover to the verifier
will be more than 460 MB, which is much more than the
data (i.e., the 85 MB CA proof) sent in our protocol. Even
though it might be tolerable for the client as certificate
generation is a one-time process, such overhead would
cause heavier burden on the CA in practice. Note that
our estimations here are simplified, which underestimate
the cost of generic MPC. The circuit generated by generic
MPC will be more complicated and the actual overhead
will be higher on commodity hardware.

B. TLS with AES-GCM

To broaden the usage of SCI, we implemented SCI
atop AES-GCM, which is another widely-supported TLS
ciphersuite and gradually gains more users [45].

In order to obtain higher efficiency, we allow the cor-
rupted client to “shift” the message of the proxy. In partic-
ular, we modify Functionality 1 and define the following
“weaker” SCI functionality, such that it allows a corrupted
client to send some message ∆ to the functionality (in
addition to Mp

t and Ms
t ), and the output of the server is

Mp
t ,M

∗+∆,Ms
t . Moreover, in order to formalize that the

input of the proxy is taken from a high-entropy source, we
let the trusted party (in case of an honest proxy) to choose

the input for it. The functionality is formally described
in Functionality 6. In this section, when we relate to
secure channel injection, we refer to it with respect to
Functionality 6. We adopt Definition 2 similarly, and refer
to it with respect to this functionality.

Functionality 6: Weak Message Injection (parameterized
with a message template: Mt = (|Mp

t |, |M∗|, |Ms
t |))

• Input: The client holds some input prefix message Mp
t ∈

{0, 1}|M
p
t | and suffix Ms

t ∈ {0, 1}|M
s
t |. The server has

no input. We assume that the message template is known
to the client and the proxy.
• Honest proxy (and corrupted client): The proxy has

no input. The functionality chooses M∗ ∈ {0, 1}|M
∗|

uniformly at random. The corrupted client inputs some
Mp

t ∈ {0, 1}
|Mp

t |, suffix Ms
t ∈ {0, 1}|M

s
t | and ∆ ∈

{0, 1}|M
∗|.

• Corrupted proxy (and honest client): The proxy sends
some M∗ ∈ {0, 1}|M

∗| to the functionality. The client
sends some Mp

t ∈ {0, 1}
|Mp

t |, suffix Ms
t ∈ {0, 1}|M

s
t |

and the functionality defines ∆ = 0|M
∗|.

• Output: The server outputs (Mp
t ,M

∗ + ∆,Ms
t ). The

proxy outputs M∗ and the client has no output.

Note that this functionality is weaker than Function-
ality 1, however, it suffices for our applications. More
specifically, as the client is later responsible for “reveal-
ing” the challenge M∗, it can extracts it from M∗+ ∆ as
it knows ∆.

1) 2P-CTR and 2P-GMAC

2P-CTR. We now turn to show how to compute a counter
mode encryption over Mp

t ||M∗||Ms
t given a secret key

K. The client holds K, messages Mp
t = (M1, . . . ,Mq),

and Ms
t = (Mq+r+1, . . . ,Mt), the proxy holds M∗ =

(Mq+1, . . . ,Mq+r), where each Mi ∈ {0, 1}n.
The counter mode on message M = (M1, . . . ,Mt)

is defined as follows. IV is chosen uniformly at random
from {0, 1}96, and we set the counter J0 = IV ||031||1.
We define incs(X) to be the function that increments the
right-most s bits of the string X , mod 2s; the left-most
|X|−s bits remain unchanged, and define incis(X) =
incs(inc

i−1
s (X), and incs(X)1 = incs(X). We define

Ji = inci32(J0) Then, each message Ci = AESK(Ji) ⊕
Mi for i = 1, . . . , t.

The 2P-CTR protocol is very simple. The client
sends the proxy the IV together with the ciphertexts
(C1, . . . , Cq) and (Cq+r+1, . . . , Ct) corresponding
to its messages. Moreover, the client computes also
the “key stream” for the proxy, consisting of all keys
AESK(Jq+1), . . . ,AESK(Jq+r). The proxy can then
compute the ciphertexts Cq+1, . . . , Cq+r using its own
messages. The output of the proxy is all cipheretexts
(C1, . . . , Ct). We denote this protocol as

(1)2P-CTR((IV,Mp
t ,M

s
t ),M∗)

= (((C1, . . . , Cq), (Cq+r+1, . . . , Ct)), (Cq+1, . . . , Cq+r))



We remark that this protocol allows the client to ma-
nipulate the ciphertexts of M∗, and to add to it some
∆. However, as we will see below, this addition can be
extracted, and the client knows the “shift” it adds to the
proxy’s message, which suffices for our applications.

2P-GMAC. For key K, IV , and blocks
X = (X1, . . . , Xt) where each Xi is of size n
bits, we define the function

GHASHH(X) = Yt+1

where Yt+1 is defined as follows. For i = 0, we define
Y0 = 0, and for i = 1, . . . , t+1, we defined Yi recursively
as:

Yi = (Yi−1 ⊕Xi) ·H . (2)

Note that in fact, this is equivalent to evaluating the
polynomial p(x) on the point H , where the polynomial
is defined as p(x) =

∑t
i=1Xi · xt−i+1. The summation

and multiplications are performed in GF(2128).
In our case, we are interested in evaluating this

polynomial where the client holds the point H ,
Xp = (X1, . . . , Xq) and Xs = (Xq+r+1, . . . , Xt),
and the proxy holds X∗ = (Xq+1, . . . , Xq+r). We can
write the polynomial p(x) as a sum of the following
three polynomials, representing the different parts
(Mp

t ,M
∗,Ms

t ):
(1) pp(x) = X1 · xt + . . .+Xq · xt−q+1.
(2) p∗(x) = Xq+1 · xt−q + . . .+Xq+r · xt−q−r+1.
(3) ps(x) = Xq+r+1 · xt−q−r + . . .+Xt · x.

Thus, p(x) = pp(x) + p∗(x) + ps(x). The client knows
pp(·), ps(·) and the point H , whereas the proxy knows
only p∗(·). Therefore, we can reduce this computation to
oblivious polynomial evaluation. Formally, let

FObvPoly(H, p
∗) := (p∗(H), λ) ,

be the two party functionality in which the client holds a
pointH , the proxy holds a polynomial p∗(·) and the client
receives the evaluation of p∗(H).

Using GHASH, we define GMAC(K, IV,X) =
GHASHH(X) ⊕ AESK(IV ||031||1), where
H = AESK(0128). We describe now the two party
protocol that computes GMAC. The protocol 2P-GMAC
(Protocol 7) is described in the FObvPoly-hybrid model,
and we discuss how to implement the FObvPoly-
functionality after. In the protocol, the proxy we
will add a random constant term to the polynomial p∗(·),
in order to mask the result p∗(H).

Implementing FObvPoly. In order to implement the obliv-
ious polynomial evaluation protocol, we use the protocol
of Ghosh, Nielsen and Nilges [26]. This protocol is se-
cure in the malicious setting assuming the existence of
an oblivious transfer and noisy encodings, and requires

Protocol 7: 2P-GMAC ((K, IV,Xp, Xs), Y ∗) in the
FObvPoly-hybrid model
Input: The client holds K, IV , and the blocks Xp =
(X1, . . . , Xq), and Xs = (Xq+r+1, . . . , Xt); the proxy
holds X∗ = (Xq+1, . . . , Xq+r), where each Xi ∈ {0, 1}n.
The protocol:
(1) The proxy defines the polynomial p∗(x) =

∑r
j=1Xq+j ·

xr−j+1. It then chooses a random field element α and
defines p′(x) = p∗(x) + α.

(2) The two parties invoke the functionality
FObvPoly(H, p

′) = (p′(H), λ) where the client inputs
the point H = AESK(0128), and the proxy inputs
the polynomial p′(x). The client receives the point
p′(H) = p∗(H) + α.

(3) Using the values H,X1, . . . , Xq , the client computes
pp(H). Using the values H,Xq+r+1, . . . , Xt, the client
computes ps(H).

(4) The client sends the proxy the tag T ′ = pp(H) +
p′(H) + ps(H) + AESK(IV ||031||1) = p(H) + α +
AESK(IV ||031||1). The proxy removes the mask α and
obtain the tag T = p(H) + AESK(IV ||031||1).

Output: The proxy outputs T .

O(t) OTs (or, exponentiations), where t is the degree
of the polynomial (in our case, the number of blocks).
In anonymous PAOs, the number of OTs is at most 32,
which can be done efficiently. We refer also to [29,30,43]
for additional oblivious polynomial evaluation protocols
based on other assumptions in the malicious setting, and
for [15, 36, 56, 61] for protocols in the semi-honest set-
tings. As opposed to our TLS with CBC and HMAC in
which the proxy must inject at least two blocks, here there
is no such restriction, and we can allow injection of a
single block. In that case, the functionality FObvPoly is in
fact oblivious linear evaluation (OLE), that can be realized
using highly efficient protocols (see [26]).

The SCI Protocol. We are now in position to describe
our solution for SCI with TLS where the proxy wants
to inject a message at some designated point into the
stream of encrypted client-to-server message data. Let
Q1, . . . , Q

∗
u, . . . , Qv be the sequence of TLS plaintext

fragments sent from the client to the server in sepa-
rate record layer encryptions, with Q∗u representing the
fragment within which the proxy will inject its private
message M∗. For simplicity and ease of exposition, we
assume that the blocks of the proxy and the client are
multiplicatives of the block size, 128 bits.

The encryption of the AES-GCM works as follows.
Let K be the key that the client and server shared. Let
Mp

t = (M1, . . . ,M`) be the messages of the client,Ms
t =

(M`+k+1, . . . ,Mm), and let M∗ = (M`+1, . . . ,M`+k)
be the messages of the proxy. The secure channel injection
protocol is as follows:

(1) The client chooses a random IV of 96 bits.
(2) Call 2P-CTR where the client inputs IV and
Mp

t ,M
2
t , the key K, while the proxy inputs M∗. Let



(C1, . . . , Cq) and (Cq+r+1, . . . , Ct) be the output of
the client, and let (Cq+1, . . . , Cq+r) be the output of
the proxy.

(3) Let A be the data that is being authenticated but not
encrypted, where |A|= u is of size ≤ 128 (u = 104 in
TLS 1.2). Let A′ = A||0128−u. The parties engage
in 2P-GMAC where the client inputs IV,K, A′,
(C1, . . . , Cq) and (Cq+r+1, . . . , Ct, len(A)||len(C))
and the proxy inputs (Cq+1, . . . , Cq+r). The proxy
receives as output a tag T .

(4) The client sends the proxy the value IV and
all ciphertexts. The proxy sends to the server
IV, (C1, . . . , Ct) and the tag T .

We discuss the security of this protocol in the full
version of this paper.

Theorem 8. Modeling AES as an ideal cipher, the SCI-
TLS protocol is a secure channel injection protocol for
TLS with AES-GCM mode (i.e., satisfies Definition 2 with
respect to Functionality 6).

C. Security Proofs for our SCI-TLS Protocols

We follow the standard definition of secure computa-
tion protocols in the presence of a malicious adversary
in the stand alone settings, as well as hybrid models, and
refer to [13, 28] to the formal definition.

Modeling f and AES. In the case of CBC with HMAC,
We model f as a random oracle and AES as an ideal
cipher. In the case of AES-GCM, there is no function
f , but we still model AES as ideal cipher. We prove the
security of the protocols in which all parties have access
to the same oracles f : {0, 1}v × {0, 1}d → {0, 1}v ,
AES : {0, 1}d × {0, 1}n → {0, 1}n and
AES−1 : {0, 1}d × {0, 1}n → {0, 1}n, where
for every key K ∈ {0, 1}d and every message
M ∈ {0, 1}n it holds that AES(K,AES−1(K,M)) =
AES−1(K,AES−1(K,M)) = M . The functions
f,AES,AES−1 are chosen uniformly at random in the
respective domain in the initial phase of the execution.
We assume that the distinguisher (between the ideal and
the real) does not receive access to the oracles, and its
knowledge about the oracles is limited to the queries that
the adversary A made during the execution.

1) Security of SCI-TLS with CBC and HMAC

We are now ready to the security proof of the SCI-TLS
protocol. We first prove the protocol in the FAES-hybrid
model and in the aforementioned random oracle (or ideal
cipher model). In fact, we will show that the protocol is
statistically-secure in this hybrid model. We then replace
the f -random oracle with SHA256 and AES with an AES
implementation, and derive security in FAES heuristically
according to the random oracle methodology [4]. We then
derive security in the plain model by replacing the FAES

functionality with the instantiated AES function, with a
general-purpose secure computation protocol computing
this functionality. Security is concluded due to sequential
composition [13, 28]. We prove:

Theorem 9 (Theorem 5, restated). The SCI-TLS protocol
is a secure channel injection protocol for TLS with AES-
CBC and HMAC-SHA-256 (i.e., satisfies Definition 2),
assuming that f is a random oracle and AES is an ideal
cipher.

We prove the Theorem with respect to the adjusted
injection functionality (i.e., Functionality 6), but in which
the trusted party always sets ∆ = 0, i.e., the client cannot
“shift” the output of the proxy.
Proof Sketch. For simplicity, we first focus the case
where the message template is such that |M∗|≥ 2n.
Moreover, for simplicity we ignore for now the SQN and
HDR and alignment of the messages of the MAC and the
AES, and just assume that all messages |Mp

t |, |Ms
t | and

|M∗| are multiples of d and n. In the full paper we show
how to adjust the proof for the other cases as well. We
prove now the case of corrupted client in full, and sketch
the proof for the case of a corrupted proxy.

Corrupted client. This case is essentially the “injection
secrecy”, that is, the client cannot learn M∗ during the
protocol interaction. Formally, we show that this is the
case by constructing a simulator that does not know M∗,
but is able to simulate the view of the client, which
consists of the messages computed by the proxy and the
server, and extracting its input.

For simplicity, we describe the simulator S as it re-
ceives an access to some random instance of the random
oracle f,AES,AES−1, and note that the simulator could
have simulated these queries on its own.

The simulator S. The simulator S works as follows:

(1) It invokes the adversary A on an auxiliary input z.
Throughout the execution, S answers the queries of
A using its own oracles f,AES,AES−1, and it just
forwards these queries.

(2) S simulates the TLS handshake protocol as an honest
server, and thus learns the keys Kaes, Khmac.

(3) The simulator chooses a message M∗0 uniformly at
random. It simulated an honest proxy interacting with
the client in 2P-HMAC and 2P-CBC with the input
M∗0 , and also simulates the FAES-functionality inside
2P-CBC (where it just receives some key from the
adversary).

(4) Using the ciphertexts C0, . . . , Ct and the key Kaes,
the simulator extracts the underlying plaintexts,
Mp

t ,M
s
t , and the tag T . Then, it verifies the MAC. If

the tag is valid, it sends the messages Mp
t ,M

s
t as the

input of the corrupted client. Otherwise, it sends ⊥.



The only difference between the real and the ideal
executions is the message M∗ that the simulator uses. In
particular, in the ideal execution the simulator does not
know the message M∗ that the proxy receives from the
trusted party, and it simulates the protocol with respect to
a different random message M∗0 for the proxy. As a result,
the view of the adversary in the ideal corresponds to M∗0 ,
while the inputs/outputs of the honest parties correspond
to M∗ 6= M∗0 . In the real execution, both the view and the
inputs/outputs of the honest parties correspond to M∗.

We show that the unlessAmakes some specific queries
the random oracle, its view is in fact independent to
the message M∗ and therefore the distinguisher cannot
distinguish between the two executions. Moreover, we
show that the probability that a poly-query adversary
(even with unbounded computational power) makes these
particular queries is exponentially small, for a polynomial
poly, and therefore the distinguishing probability of the
distinguisher is exponentially small.

Towards this end, let M∗ = (M∗`+1, . . . ,M
∗
`+j) =

(P ∗q+1, . . . , P
∗
q+r) be the injected message (for both the

ideal and real). We define the set of offending queries
in the real execution, denotes by Sreal, to be one of the
following queries:

• f -queries: Any one of the queries that an honest proxy
/ simulator make in order to compute s`+j+1 (given
s` that was sent by the adversary). That is, s`+1 =
f(s`,M

∗
`+1), . . . , s`+j+1 = f(s`+j ,M

∗
`+j).

• AES-queries. Any one of the AES-queries that
an honest proxy / simulator make in order to
compute Cq+1, . . . , Cq+r by the FAES invocations,
given the value Cq sent by the adversary. That
is, Cq+1 = AES(Kaes, Cq ⊕ P ∗q+1), . . . , Cq+r =
AES(Kaes, Cq+r−1 ⊕ P ∗q+r).
• AES−1-queries. Any one of the queries that are cor-

related to Cq+1, . . . , Cq+r−1 (note that the adversary
can make a query to AES−1(Kaes, Cq+r), as its view
contains Cq+r).

Let Sideal denote the set of corresponding queries in
the ideal execution, defined with respect to M∗0 . Let B
denote the (bad) even in which A makes a call to any
one of the queries in Sreal and Sideal in the corresponding
execution. Since M∗,M∗0 are distributed uniformly, each
query contains a block value that is hidden from the view
of the adversary unless the adversary makes this specific
query. With each query, the adversary A learns one value,
which is also distributed uniformly. As such, it is easy to
see that as long as no offending query is made, the view
of the adversary is distributed identically in both execu-
tions as the view is completely independent to M∗,M∗0 .
Moreover, the event B has the same probability in both
processes. This implies that Pr[B] ≤ (|Sideal|+|Sreal|) ·
(q + 1) · (2−n + 2−d), where q bounds the number of

queries that A makes, n is the block size of AES and d is
the size of the message part in HMAC.

Corrupted proxy. In this case, we essentially prove the
“transport privacy”, that is, that the proxy does not learn
anything about other messages other than M∗. Moreover,
we show “transcript integrity”, and that the proxy cannot
modify parts of the message transcript besides M∗. We
proceed with a description of the simulator S:
(1) The simulator plays the role of the client and the

server in the handshake phase, and transmits the
message throw A. It learns Kaes and Khmac.

(2) The simulator chooses arbitrary inputs Mp
t ,M

s
t of

the corresponding sizes, and runs an honest execution
of the protocol with respect to this messages.

(3) Let C ′1, . . . , C
′
q be the messages sent by the adversary

to the simulator, that are supposed to be delivered
to the server (these might be different than the ci-
phertexts replied by the simulator during 2P-CBC).
S decrypts C ′1, . . . , C

′
q using Kaes and learns the

underlying plaintext P ′1, . . . , P
′
q . It acts like an honest

server and checks that they messages are well-formed
according to the TLS protocol. It extracts the under-
lying messages M̃p

t ‖M̃∗‖M̃s
t , and verifies the tag.

(4) It checks that the extracted messages are those used
in the simulation, that is, M̃p

t = Mp
t and M̃s

t = Ms
t .

(5) If all verifications pass, the simulator sends M̃∗ to
the trusted party. Otherwise, it sends ⊥.

Based on this simulator, in the full version of the paper
we conclude the proof.

2) Security of SCI-TLS with AES-GCM

Due to lack of space, we omit the security proof of
SCI-TLS with AES-GCM and refer to the full paper.
We give just a high-level idea of how the proof works.
The view of the corrupted client is simply the output of
the oblivious polynomial evaluation protocol, which is a
uniform random field element due to the masking that
the proxy adds to the polynomial p∗(·). On the other
hand, the counter mode enables the client to make the
add some “shift” ∆ the plaintext of the proxy, and also
provide the right authentication for this shift. As a result,
the server obtains some message M∗ + ∆ instead of just
M∗. However, the simulator can easily extract this ∆, and
send it to the trusted party.

The case of corrupted proxy is similar to the corre-
sponding one in Theorem 9, and the simulator runs an
honest execution of the protocol with respect to some
arbitrarily messages Mp

t ,M
s
t (showing “transport pri-

vacy”). Additionally, it also verifies that the messages
decrypted by the simulated server are those that were sent
by the simulated client (i.e., checks “transport integrity”).
Integrity follows by reducing the protocol to the authen-
tication of AES-GCM.


