
A Better Method to Analyze Blockchain 
Consistency

Lucianna Kiffer      Rajmohan Rajaraman      abhi shelat
Northeastern University

AFT 2019



BLOCKCHAIN 101

2



BLOCKCHAIN 101

(i) Chain of blocks

3



BLOCKCHAIN 101

(i) Chain of blocks

TXs

3



BLOCKCHAIN 101

(i) Chain of blocks

TXs

H( . )

3



BLOCKCHAIN 101

(i) Chain of blocks

TXs

H( . )
POW

3



BLOCKCHAIN 101

(i) Chain of blocks

TXs

H( . )
POW

(ii) Peer-to-peer network

3



BLOCKCHAIN 101

(i) Chain of blocks

TXs

H( . )
POW

(ii) Peer-to-peer network

(iii) Mining rule
e.g. longest chain

3



BLOCKCHAIN 101

(i) Chain of blocks

TXs

H( . )
POW

(ii) Peer-to-peer network

(iii) Mining rule
e.g. longest chain

3



BLOCKCHAIN 101

(i) Chain of blocks

TXs

H( . )
POW

(ii) Peer-to-peer network

(iii) Mining rule
e.g. longest chain

3



BLOCKCHAIN 101

(i) Chain of blocks

TXs

H( . )
POW

(ii) Peer-to-peer network

(iii) Mining rule
e.g. longest chain

3

DAG



Related Work

[Pass, Seeman, shelat 2016], [Garay, Kiayias, Leonardos 2016, 2017], [Kiayias, 
Panagiotakos 2015]

• Formal framework for analyzing blockchain protocols:
‣ Consistency(common prefix/persistence)
‣ Chainquality
‣ Chaingrowth (Liveness)

• Attacks on chainquality, growth and consistency 

[Lewenberg, Sompolinsky, Zohar 2015,2016], [Sompolinsky, Zohar 2015], [Martino, 
Quaintance,Popejoy 2018]

• DAG-based blockchain models 
‣ eg. GHOST, Spectre, Chainweb …

[Nakamoto 2009], [Eyal, Sirer 2013],[Kiayias, Panagiotakos 2015,2016], [Pass,Seeman, shelat 
2016]

5



Blockchain DefinitionBlockchain Definition

�3

Both alg use a security param k

On input (k,state), outputs a  
sequence of records, 

Maintains a local variable state
V predicate defines semantics of block chain

On input               , outputs a sequence of 
records         

Both algorithms use a security parameter k

Maintains a local variable state 
   predicate defines the semantics of the blockchainV

(k, state)

�m

Blockchain Definition

�3

Both alg use a security param k

On input (k,state), outputs a  
sequence of records, 

Maintains a local variable state
V predicate defines semantics of block chain

Blockchain Definition

�3

Both alg use a security param k

On input (k,state), outputs a  
sequence of records, 

Maintains a local variable state
V predicate defines semantics of block chain

4



BLOCKCHAIN MODEL

6



ExecutionExecution

�4

Environment, initializes players, 
either honest or corrupt.  
Provides inputs to all parties.

A(1k)

7



ExecutionExecution

�4

Environment, initializes players, 
either honest or corrupt.  
Provides inputs to all parties.

A(1k)

Execution

�4

Environment, initializes players, 
either honest or corrupt.  
Provides inputs to all parties.

A(1k)

Corrupt parties are controlled by A

Honest 
parties 
execute 
protocol 
Pi

state1

state2

state3

Execution

�4

Environment, initializes players, 
either honest or corrupt.  
Provides inputs to all parties.

A(1k)

Corrupt parties are controlled by A

Honest 
parties 
execute 
protocol 
Pi

state1

state2

state3

A(1k)

�V

7



ExecutionExecution

�4

Environment, initializes players, 
either honest or corrupt.  
Provides inputs to all parties.

A(1k)

Execution

�4

Environment, initializes players, 
either honest or corrupt.  
Provides inputs to all parties.

A(1k)

Corrupt parties are controlled by A

Honest 
parties 
execute 
protocol 
Pi

state1

state2

state3

Execution

�4

Environment, initializes players, 
either honest or corrupt.  
Provides inputs to all parties.

A(1k)

Corrupt parties are controlled by A

Honest 
parties 
execute 
protocol 
Pi

state1

state2

state3

A(1k)

�V

7



ExecutionExecution

�4

Environment, initializes players, 
either honest or corrupt.  
Provides inputs to all parties.

A(1k)

Execution

�4

Environment, initializes players, 
either honest or corrupt.  
Provides inputs to all parties.

A(1k)

Corrupt parties are controlled by A

Honest 
parties 
execute 
protocol 
Pi

state1

state2

state3

Execution

�4

Environment, initializes players, 
either honest or corrupt.  
Provides inputs to all parties.

A(1k)

Corrupt parties are controlled by A

Honest 
parties 
execute 
protocol 
Pi

state1

state2

state3

A(1k)

Round r

�V

7



ExecutionExecution

�4

Environment, initializes players, 
either honest or corrupt.  
Provides inputs to all parties.

A(1k)

Execution

�4

Environment, initializes players, 
either honest or corrupt.  
Provides inputs to all parties.

A(1k)

Corrupt parties are controlled by A

Honest 
parties 
execute 
protocol 
Pi

state1

state2

state3

Execution

�4

Environment, initializes players, 
either honest or corrupt.  
Provides inputs to all parties.

A(1k)

Corrupt parties are controlled by A

Honest 
parties 
execute 
protocol 
Pi

state1

state2

state3

A(1k)

Round r

�V

m0

m1

m2

m3

m4

7



ExecutionExecution

�4

Environment, initializes players, 
either honest or corrupt.  
Provides inputs to all parties.

A(1k)

Execution

�4

Environment, initializes players, 
either honest or corrupt.  
Provides inputs to all parties.

A(1k)

Corrupt parties are controlled by A

Honest 
parties 
execute 
protocol 
Pi

state1

state2

state3

Execution

�4

Environment, initializes players, 
either honest or corrupt.  
Provides inputs to all parties.

A(1k)

Corrupt parties are controlled by A

Honest 
parties 
execute 
protocol 
Pi

state1

state2

state3

A(1k)

Round r
Execution

�5

A(1k)

state1

state2

state3

Round r
1. Inspect state of pi 
2. Corrupt 
3. Uncorrupt

Environment, initializes players, 
either honest or corrupt.  
Provides inputs to all parties.

�V

7



ExecutionExecution

�4

Environment, initializes players, 
either honest or corrupt.  
Provides inputs to all parties.

A(1k)

Execution

�4

Environment, initializes players, 
either honest or corrupt.  
Provides inputs to all parties.

A(1k)

Corrupt parties are controlled by A

Honest 
parties 
execute 
protocol 
Pi

state1

state2

state3

Execution

�4

Environment, initializes players, 
either honest or corrupt.  
Provides inputs to all parties.

A(1k)

Corrupt parties are controlled by A

Honest 
parties 
execute 
protocol 
Pi

state1

state2

state3

A(1k)

Round r
Execution

�5

A(1k)

state1

state2

state3

Round r
1. Inspect state of pi 
2. Corrupt 
3. Uncorrupt

Environment, initializes players, 
either honest or corrupt.  
Provides inputs to all parties.

�V

Execution

�4

Environment, initializes players, 
either honest or corrupt.  
Provides inputs to all parties.

A(1k)

Corrupt parties are controlled by A

Honest 
parties 
execute 
protocol 
Pi

state1

state2

state3

Execution

�5

A(1k)

state1

state2

state3

Round r
1. Inspect state of pi 
2. Corrupt 
3. UncorruptA controls 

this party

state4

Environment, initializes players, 
either honest or corrupt.  
Provides inputs to all parties.

7



ExecutionExecution

�4

Environment, initializes players, 
either honest or corrupt.  
Provides inputs to all parties.

A(1k)

Execution

�4

Environment, initializes players, 
either honest or corrupt.  
Provides inputs to all parties.

A(1k)

Corrupt parties are controlled by A

Honest 
parties 
execute 
protocol 
Pi

state1

state2

state3

Execution

�4

Environment, initializes players, 
either honest or corrupt.  
Provides inputs to all parties.

A(1k)

Corrupt parties are controlled by A

Honest 
parties 
execute 
protocol 
Pi

state1

state2

state3

A(1k)

Round r
Execution

�5

A(1k)

state1

state2

state3

Round r
1. Inspect state of pi 
2. Corrupt 
3. Uncorrupt

Environment, initializes players, 
either honest or corrupt.  
Provides inputs to all parties.

�V

Execution

�4

Environment, initializes players, 
either honest or corrupt.  
Provides inputs to all parties.

A(1k)

Corrupt parties are controlled by A

Honest 
parties 
execute 
protocol 
Pi

state1

state2

state3

Execution

�5

A(1k)

state1

state2

state3

Round r
1. Inspect state of pi 
2. Corrupt 
3. UncorruptA controls 

this party

state4

Environment, initializes players, 
either honest or corrupt.  
Provides inputs to all parties.

Execution

�5

A(1k)

state1

state2

state3

Round r
1. Inspect state of pi 
2. Corrupt 
3. UncorruptA controls 

this party

state4

Environment, initializes players, 
either honest or corrupt.  
Provides inputs to all parties.

7



ExecutionExecution

�4

Environment, initializes players, 
either honest or corrupt.  
Provides inputs to all parties.

A(1k)

Execution

�4

Environment, initializes players, 
either honest or corrupt.  
Provides inputs to all parties.

A(1k)

Corrupt parties are controlled by A

Honest 
parties 
execute 
protocol 
Pi

state1

state2

state3

Execution

�4

Environment, initializes players, 
either honest or corrupt.  
Provides inputs to all parties.

A(1k)

Corrupt parties are controlled by A

Honest 
parties 
execute 
protocol 
Pi

state1

state2

state3

A(1k)

Round r

�V

Execution

�4

Environment, initializes players, 
either honest or corrupt.  
Provides inputs to all parties.

A(1k)

Corrupt parties are controlled by A

Honest 
parties 
execute 
protocol 
Pi

state1

state2

state3

Execution

�5

A(1k)

state1

state2

state3

Round r
1. Inspect state of pi 
2. Corrupt 
3. UncorruptA controls 

this party

state4

Environment, initializes players, 
either honest or corrupt.  
Provides inputs to all parties.

Execution

�5

A(1k)

state1

state2

state3

Round r
1. Inspect state of pi 
2. Corrupt 
3. UncorruptA controls 

this party

state4

Environment, initializes players, 
either honest or corrupt.  
Provides inputs to all parties.Execution

�9

A(1k)

state1

state2

state3

Round r
Random Oracle

H(x) 
H.Ver(x,y)

queries 
1 H(x) 
* Ver(x,y)

queries 
q H(x) 
sequentially 

* Ver(x,y)

Environment, initializes players, 
either honest or corrupt.  
Provides inputs to all parties.

H(x)
Ver(x, y)

queries

queries
1H(x)

qH(x)
sequentially

* Ver(x, y)

* Ver(x, y)

7



Random Oracle

�10

H(x) : {0,1}* →  {0,1}k 

H.Ver(x,y): {0,1}* x {0,1}k → {0,1}

“Best way to mine a block is to 
hash-and-check. Only 1 hash per 
round.”

verify a hash

“Players can verify blocks without 
having to use their hash query.”

8

Random OracleRandom Oracle

�10

H(x) : {0,1}* →  {0,1}k 

H.Ver(x,y): {0,1}* x {0,1}k → {0,1}

“Best way to mine a block is to 
hash-and-check. Only 1 hash per 
round.”

verify a hash

“Players can verify blocks without 
having to use their hash query.”



Adversarial Model

• Dynamic control of who to corrupt/uncorrupt

• Full view of all honest states

• q sequential queries to H(x) at every round

• Reorder receipt of honest blocks

• Delay receipt of honest blocks up to some amount

• Withhold adversarial blocks

9



main parameters

∆ the network delay bound

p = 1
c·n∆ the mining hardness is expressed in terms of param-

eter c, roughly the expected number of network de-
lays before some block is mined

ρ the adversarial fraction of parties

µ = 1 − ρ the fraction of honest parties

MAIN PARAMETERS

12

(with a round being the smallest unit of time)



MAIN PARAMETERSmain parameters

∆ the network delay bound

p = 1
c·n∆ the mining hardness is expressed in terms of param-

eter c, roughly the expected number of network de-
lays before some block is mined

ρ the adversarial fraction of parties

µ = 1 − ρ the fraction of honest parties

12

(with a round being the smallest unit of time)



MAIN PARAMETERSmain parameters

∆ the network delay bound

p = 1
c·n∆ the mining hardness is expressed in terms of param-

eter c, roughly the expected number of network de-
lays before some block is mined

ρ the adversarial fraction of parties

µ = 1 − ρ the fraction of honest parties

(with a round being the smallest unit of time)

12



BLOCKCHAIN CONSISTENCY

10



Chain Consistency
“in any round r, chain of two honest players i,j 
agree on all but last T records”.   [common-prefix, GKL15]

“for any two rounds r < r’,  
for any two players i,j, i is honest @ r, j honest @ r’ 
chains of i,j agree on all but last T records of i” 

T records

Both chains agree 
of all of these 
records

11

Chain Consistency

[Pass, Seeman, shelat 2016], [Common prefix: Garay, Kiayias, Leonardos 2016, 2017]



Previous Work on Nakamoto Consistency

13

Anonymous submission #586 to ACM CCS 2018

1 2 4 10 25 60 100
0

1
10

3
10

1
2

c (blocktime in terms of network delay �)

�
(A
dv
er
sa
ry

fr
ac
tio

n)

Figure 1: Replication of [16, Fig. 1], “Minimumpercentage of
computing power an adversary must hold in order to break
consistency" using same parameters n = 105 and � = 1013,
p = 1

c� , but illustrating the new bound from our Thm. 4.4.

In subsequent work in 2017, Garay, Kiayas and Leonardos [8]
studied aspects of how the hardness p is adjusted as more players
join the protocol during epochs in the Nakamoto consensus protocol
and how this epoch must be su�ciently large to avoid certain
attacks. Techniques from this paper were also used to update [7];
in particular, the updated version of the latter extends the analysis
to the partially synchronous model but is not precise enough to
make concrete claims about the parameters.

1.1 Contributions
In this paper we show how Markov chains can be used to model
blockchain protocols to both simplify the analysis of blockchain
protocols and attacks and to make precise claims about parameter
relationships. To introduce our method, in §4.2 we show how to
replicate the analysis of Nakamoto’s protocol done by Pass et al. [16]
using a Markov model. We validate our method by recovering
essentially the same bound.

By inspecting this graphical Markov model, however, we discov-
ered cases in which the counting of events in [16] either over- or
under-counts a special event. Based on this insight, we propose a
new Markov model in §4.3 that exactly counts so called “conver-
gence opportunities” and thus leads to more accurate bounds on
consistency (see Thm 4.4). To illustrate this new result, Fig. 1 repli-
cates a graph from [16] showing a relationship between proof of
work hardness and adversary control. Against the original analysis
( ) and attack ( ), our new result from the Markov model
(??) shows higher resilience at lower parameters, and slightly less
resilience at higher parameters.

To further illustrate our technique, in §5we introduce Cliquechain,
a speci�c example of the Chainweb protocol [14] for which we can
use our techniques to show the same consistency lower-bound
as Nakamoto’s protocol. Chainweb proposes a blockchain proto-
col that creates a braid of various parallel chains. The main idea
is that at each level the chains reference each other according to
some base graph, and thus in order to replace one block in any

chain, you must also replace the blocks in the parallel chains that
reference it. The protocol claims to be able to handle 10K trans-
actions per second over hundreds or thousands of parallel chains,
but the analysis in the paper again only considers variations of the
50% attack. Our analysis on consistency does not support this 10k
claim. [Add in sentence supporting this last claim: bitcoin
can handle max 7 txns/sec, and CliqueChain provably can
only handle the same block rate as Nakamoto for the same
security lowerbound, so regardless of how many chain we
have with CliqueChain, either the blocks have to be bigger
(so � increases) or the individual block rate needs to increase
(so c is lower) in order to support more txns/sec. Either way
the security threshold is lowered]

In §6, we extend our techniques to establish that the protocol
GHOST [19] also has the same consistency lower bounds. GHOST’s
main claim is also that it can handle higher transaction rates than
Nakamoto’s protocol while being resilient to 50% attacks.

For each protocol we also analyze variants of attacks using our
technique and provide probability distributions for how long the
attacks last. In §4.4 we �rst show a very simple Markov model
that captures the ‘50% attack’ on Nakamoto presented in [16]. As
discussed so far, the notion of blockchain consistency considered in
the literature is still an asymptotic notion that requires the “proba-
bility of a fork” to fall exponentially with some parameter T . We
use this same attack model to answer very pragmatic questions
about blockchains: For example “how long should one wait before
con�rming a transaction?” While folklore holds that one should ig-
nore (i.e., wait for) the last T = 6 blocks, we provide a more precise
answer to this question by modeling an attack in which the goal
of the adversary is to “undo” a recently con�rmed transaction. We
show, for example, thatT = 6 is a surprisingly low default for chains
like Ethereum which use more aggressive network parameters.

Since this delay attack is not successful on GHOST, we present
another attack, the ‘Balancing Attack’, with a Markov chain in §6.4
which captures a simpli�ed version of the attack on GHOST.We use
this model to capture a lower bound on transaction con�rmation
time for the GHOST protocol in Fig. 13

Our work is not the �rst to employ Markov-based analysis of
blockchains. Indeed, Eyal and Sirer [6] develop a Markov model to
analyze the success of the sel�sh mining attack on Nakamoto’s pro-
tocol. Our work, however, is the �rst to use Markov-based models
to analyze consistency against any adversary, and provides a gen-
eral framework to analyze speci�c attacks on various blockchain
protocols. Previous studies on consistency [7, 8, 16] have advocated
using Markov methods, but have considered them too complicated
to analyze: for instance, the authors of [16] write “the Markov chain
that arises from this problem is too complicated to analyze using
standard concentration bounds for Markov chains.” We show that
consistency of several blockchain protocols as well as the impact
of speci�c attacks are well-captured by natural Markov chains, and
can be analyzed using a judicious combination of (a) derivation of
steady-state distributions; (b) concentration bounds for generalized
Markov chains; (c) generating functions for deriving probability
of signi�cant events; and (d) simpli�cation of the Markov chain,
where appropriate. Even in cases, where we are unable to derive

2

[Pass, Seeman and shelat 2016]

main parameters

∆ the network delay bound

p = 1
c·n∆ the mining hardness is expressed in terms of param-

eter c, roughly the expected number of network de-
lays before some block is mined

ρ the adversarial fraction of parties

µ = 1 − ρ the fraction of honest parties

Recall mining hardness is 



13

Anonymous submission #586 to ACM CCS 2018

1 2 4 10 25 60 100
0

1
10

3
10

1
2

c (blocktime in terms of network delay �)

�
(A
dv
er
sa
ry

fr
ac
tio

n)

Delay attack from [16]
Consistency from [16]

Figure 1: Replication of [16, Fig. 1], “Minimumpercentage of
computing power an adversary must hold in order to break
consistency" using same parameters n = 105 and � = 1013,
p = 1

c� , but illustrating the new bound from our Thm. 4.4.

In subsequent work in 2017, Garay, Kiayas and Leonardos [8]
studied aspects of how the hardness p is adjusted as more players
join the protocol during epochs in the Nakamoto consensus protocol
and how this epoch must be su�ciently large to avoid certain
attacks. Techniques from this paper were also used to update [7];
in particular, the updated version of the latter extends the analysis
to the partially synchronous model but is not precise enough to
make concrete claims about the parameters.

1.1 Contributions
In this paper we show how Markov chains can be used to model
blockchain protocols to both simplify the analysis of blockchain
protocols and attacks and to make precise claims about parameter
relationships. To introduce our method, in §4.2 we show how to
replicate the analysis of Nakamoto’s protocol done by Pass et al. [16]
using a Markov model. We validate our method by recovering
essentially the same bound.

By inspecting this graphical Markov model, however, we discov-
ered cases in which the counting of events in [16] either over- or
under-counts a special event. Based on this insight, we propose a
new Markov model in §4.3 that exactly counts so called “conver-
gence opportunities” and thus leads to more accurate bounds on
consistency (see Thm 4.4). To illustrate this new result, Fig. 1 repli-
cates a graph from [16] showing a relationship between proof of
work hardness and adversary control. Against the original analysis
( ) and attack ( ), our new result from the Markov model
(??) shows higher resilience at lower parameters, and slightly less
resilience at higher parameters.

To further illustrate our technique, in §5we introduce Cliquechain,
a speci�c example of the Chainweb protocol [14] for which we can
use our techniques to show the same consistency lower-bound
as Nakamoto’s protocol. Chainweb proposes a blockchain proto-
col that creates a braid of various parallel chains. The main idea
is that at each level the chains reference each other according to
some base graph, and thus in order to replace one block in any

chain, you must also replace the blocks in the parallel chains that
reference it. The protocol claims to be able to handle 10K trans-
actions per second over hundreds or thousands of parallel chains,
but the analysis in the paper again only considers variations of the
50% attack. Our analysis on consistency does not support this 10k
claim. [Add in sentence supporting this last claim: bitcoin
can handle max 7 txns/sec, and CliqueChain provably can
only handle the same block rate as Nakamoto for the same
security lowerbound, so regardless of how many chain we
have with CliqueChain, either the blocks have to be bigger
(so � increases) or the individual block rate needs to increase
(so c is lower) in order to support more txns/sec. Either way
the security threshold is lowered]

In §6, we extend our techniques to establish that the protocol
GHOST [19] also has the same consistency lower bounds. GHOST’s
main claim is also that it can handle higher transaction rates than
Nakamoto’s protocol while being resilient to 50% attacks.

For each protocol we also analyze variants of attacks using our
technique and provide probability distributions for how long the
attacks last. In §4.4 we �rst show a very simple Markov model
that captures the ‘50% attack’ on Nakamoto presented in [16]. As
discussed so far, the notion of blockchain consistency considered in
the literature is still an asymptotic notion that requires the “proba-
bility of a fork” to fall exponentially with some parameter T . We
use this same attack model to answer very pragmatic questions
about blockchains: For example “how long should one wait before
con�rming a transaction?” While folklore holds that one should ig-
nore (i.e., wait for) the last T = 6 blocks, we provide a more precise
answer to this question by modeling an attack in which the goal
of the adversary is to “undo” a recently con�rmed transaction. We
show, for example, thatT = 6 is a surprisingly low default for chains
like Ethereum which use more aggressive network parameters.

Since this delay attack is not successful on GHOST, we present
another attack, the ‘Balancing Attack’, with a Markov chain in §6.4
which captures a simpli�ed version of the attack on GHOST.We use
this model to capture a lower bound on transaction con�rmation
time for the GHOST protocol in Fig. 13

Our work is not the �rst to employ Markov-based analysis of
blockchains. Indeed, Eyal and Sirer [6] develop a Markov model to
analyze the success of the sel�sh mining attack on Nakamoto’s pro-
tocol. Our work, however, is the �rst to use Markov-based models
to analyze consistency against any adversary, and provides a gen-
eral framework to analyze speci�c attacks on various blockchain
protocols. Previous studies on consistency [7, 8, 16] have advocated
using Markov methods, but have considered them too complicated
to analyze: for instance, the authors of [16] write “the Markov chain
that arises from this problem is too complicated to analyze using
standard concentration bounds for Markov chains.” We show that
consistency of several blockchain protocols as well as the impact
of speci�c attacks are well-captured by natural Markov chains, and
can be analyzed using a judicious combination of (a) derivation of
steady-state distributions; (b) concentration bounds for generalized
Markov chains; (c) generating functions for deriving probability
of signi�cant events; and (d) simpli�cation of the Markov chain,
where appropriate. Even in cases, where we are unable to derive

2

Anonymous submission #586 to ACM CCS 2018

1 2 4 10 25 60 100
0

1
10

3
10

1
2

c (blocktime in terms of network delay �)

�
(A
dv
er
sa
ry

fr
ac
tio

n)

Delay attack from [16]
Consistency from [16]

Figure 1: Replication of [16, Fig. 1], “Minimumpercentage of
computing power an adversary must hold in order to break
consistency" using same parameters n = 105 and � = 1013,
p = 1

c� , but illustrating the new bound from our Thm. 4.4.

In subsequent work in 2017, Garay, Kiayas and Leonardos [8]
studied aspects of how the hardness p is adjusted as more players
join the protocol during epochs in the Nakamoto consensus protocol
and how this epoch must be su�ciently large to avoid certain
attacks. Techniques from this paper were also used to update [7];
in particular, the updated version of the latter extends the analysis
to the partially synchronous model but is not precise enough to
make concrete claims about the parameters.

1.1 Contributions
In this paper we show how Markov chains can be used to model
blockchain protocols to both simplify the analysis of blockchain
protocols and attacks and to make precise claims about parameter
relationships. To introduce our method, in §4.2 we show how to
replicate the analysis of Nakamoto’s protocol done by Pass et al. [16]
using a Markov model. We validate our method by recovering
essentially the same bound.

By inspecting this graphical Markov model, however, we discov-
ered cases in which the counting of events in [16] either over- or
under-counts a special event. Based on this insight, we propose a
new Markov model in §4.3 that exactly counts so called “conver-
gence opportunities” and thus leads to more accurate bounds on
consistency (see Thm 4.4). To illustrate this new result, Fig. 1 repli-
cates a graph from [16] showing a relationship between proof of
work hardness and adversary control. Against the original analysis
( ) and attack ( ), our new result from the Markov model
(??) shows higher resilience at lower parameters, and slightly less
resilience at higher parameters.

To further illustrate our technique, in §5we introduce Cliquechain,
a speci�c example of the Chainweb protocol [14] for which we can
use our techniques to show the same consistency lower-bound
as Nakamoto’s protocol. Chainweb proposes a blockchain proto-
col that creates a braid of various parallel chains. The main idea
is that at each level the chains reference each other according to
some base graph, and thus in order to replace one block in any

chain, you must also replace the blocks in the parallel chains that
reference it. The protocol claims to be able to handle 10K trans-
actions per second over hundreds or thousands of parallel chains,
but the analysis in the paper again only considers variations of the
50% attack. Our analysis on consistency does not support this 10k
claim. [Add in sentence supporting this last claim: bitcoin
can handle max 7 txns/sec, and CliqueChain provably can
only handle the same block rate as Nakamoto for the same
security lowerbound, so regardless of how many chain we
have with CliqueChain, either the blocks have to be bigger
(so � increases) or the individual block rate needs to increase
(so c is lower) in order to support more txns/sec. Either way
the security threshold is lowered]

In §6, we extend our techniques to establish that the protocol
GHOST [19] also has the same consistency lower bounds. GHOST’s
main claim is also that it can handle higher transaction rates than
Nakamoto’s protocol while being resilient to 50% attacks.

For each protocol we also analyze variants of attacks using our
technique and provide probability distributions for how long the
attacks last. In §4.4 we �rst show a very simple Markov model
that captures the ‘50% attack’ on Nakamoto presented in [16]. As
discussed so far, the notion of blockchain consistency considered in
the literature is still an asymptotic notion that requires the “proba-
bility of a fork” to fall exponentially with some parameter T . We
use this same attack model to answer very pragmatic questions
about blockchains: For example “how long should one wait before
con�rming a transaction?” While folklore holds that one should ig-
nore (i.e., wait for) the last T = 6 blocks, we provide a more precise
answer to this question by modeling an attack in which the goal
of the adversary is to “undo” a recently con�rmed transaction. We
show, for example, thatT = 6 is a surprisingly low default for chains
like Ethereum which use more aggressive network parameters.

Since this delay attack is not successful on GHOST, we present
another attack, the ‘Balancing Attack’, with a Markov chain in §6.4
which captures a simpli�ed version of the attack on GHOST.We use
this model to capture a lower bound on transaction con�rmation
time for the GHOST protocol in Fig. 13

Our work is not the �rst to employ Markov-based analysis of
blockchains. Indeed, Eyal and Sirer [6] develop a Markov model to
analyze the success of the sel�sh mining attack on Nakamoto’s pro-
tocol. Our work, however, is the �rst to use Markov-based models
to analyze consistency against any adversary, and provides a gen-
eral framework to analyze speci�c attacks on various blockchain
protocols. Previous studies on consistency [7, 8, 16] have advocated
using Markov methods, but have considered them too complicated
to analyze: for instance, the authors of [16] write “the Markov chain
that arises from this problem is too complicated to analyze using
standard concentration bounds for Markov chains.” We show that
consistency of several blockchain protocols as well as the impact
of speci�c attacks are well-captured by natural Markov chains, and
can be analyzed using a judicious combination of (a) derivation of
steady-state distributions; (b) concentration bounds for generalized
Markov chains; (c) generating functions for deriving probability
of signi�cant events; and (d) simpli�cation of the Markov chain,
where appropriate. Even in cases, where we are unable to derive

2

[Pass, Seeman and shelat 2016]

main parameters

∆ the network delay bound

p = 1
c·n∆ the mining hardness is expressed in terms of param-

eter c, roughly the expected number of network de-
lays before some block is mined

ρ the adversarial fraction of parties

µ = 1 − ρ the fraction of honest parties

Recall mining hardness is 

Previous Work on Nakamoto Consistency



13

Anonymous submission #586 to ACM CCS 2018

1 2 4 10 25 60 100
0

1
10

3
10

1
2

c (blocktime in terms of network delay �)

�
(A
dv
er
sa
ry

fr
ac
tio

n)

Delay attack from [16]
Consistency from [16]

Figure 1: Replication of [16, Fig. 1], “Minimumpercentage of
computing power an adversary must hold in order to break
consistency" using same parameters n = 105 and � = 1013,
p = 1

c� , but illustrating the new bound from our Thm. 4.4.

In subsequent work in 2017, Garay, Kiayas and Leonardos [8]
studied aspects of how the hardness p is adjusted as more players
join the protocol during epochs in the Nakamoto consensus protocol
and how this epoch must be su�ciently large to avoid certain
attacks. Techniques from this paper were also used to update [7];
in particular, the updated version of the latter extends the analysis
to the partially synchronous model but is not precise enough to
make concrete claims about the parameters.

1.1 Contributions
In this paper we show how Markov chains can be used to model
blockchain protocols to both simplify the analysis of blockchain
protocols and attacks and to make precise claims about parameter
relationships. To introduce our method, in §4.2 we show how to
replicate the analysis of Nakamoto’s protocol done by Pass et al. [16]
using a Markov model. We validate our method by recovering
essentially the same bound.

By inspecting this graphical Markov model, however, we discov-
ered cases in which the counting of events in [16] either over- or
under-counts a special event. Based on this insight, we propose a
new Markov model in §4.3 that exactly counts so called “conver-
gence opportunities” and thus leads to more accurate bounds on
consistency (see Thm 4.4). To illustrate this new result, Fig. 1 repli-
cates a graph from [16] showing a relationship between proof of
work hardness and adversary control. Against the original analysis
( ) and attack ( ), our new result from the Markov model
(??) shows higher resilience at lower parameters, and slightly less
resilience at higher parameters.

To further illustrate our technique, in §5we introduce Cliquechain,
a speci�c example of the Chainweb protocol [14] for which we can
use our techniques to show the same consistency lower-bound
as Nakamoto’s protocol. Chainweb proposes a blockchain proto-
col that creates a braid of various parallel chains. The main idea
is that at each level the chains reference each other according to
some base graph, and thus in order to replace one block in any

chain, you must also replace the blocks in the parallel chains that
reference it. The protocol claims to be able to handle 10K trans-
actions per second over hundreds or thousands of parallel chains,
but the analysis in the paper again only considers variations of the
50% attack. Our analysis on consistency does not support this 10k
claim. [Add in sentence supporting this last claim: bitcoin
can handle max 7 txns/sec, and CliqueChain provably can
only handle the same block rate as Nakamoto for the same
security lowerbound, so regardless of how many chain we
have with CliqueChain, either the blocks have to be bigger
(so � increases) or the individual block rate needs to increase
(so c is lower) in order to support more txns/sec. Either way
the security threshold is lowered]

In §6, we extend our techniques to establish that the protocol
GHOST [19] also has the same consistency lower bounds. GHOST’s
main claim is also that it can handle higher transaction rates than
Nakamoto’s protocol while being resilient to 50% attacks.

For each protocol we also analyze variants of attacks using our
technique and provide probability distributions for how long the
attacks last. In §4.4 we �rst show a very simple Markov model
that captures the ‘50% attack’ on Nakamoto presented in [16]. As
discussed so far, the notion of blockchain consistency considered in
the literature is still an asymptotic notion that requires the “proba-
bility of a fork” to fall exponentially with some parameter T . We
use this same attack model to answer very pragmatic questions
about blockchains: For example “how long should one wait before
con�rming a transaction?” While folklore holds that one should ig-
nore (i.e., wait for) the last T = 6 blocks, we provide a more precise
answer to this question by modeling an attack in which the goal
of the adversary is to “undo” a recently con�rmed transaction. We
show, for example, thatT = 6 is a surprisingly low default for chains
like Ethereum which use more aggressive network parameters.

Since this delay attack is not successful on GHOST, we present
another attack, the ‘Balancing Attack’, with a Markov chain in §6.4
which captures a simpli�ed version of the attack on GHOST.We use
this model to capture a lower bound on transaction con�rmation
time for the GHOST protocol in Fig. 13

Our work is not the �rst to employ Markov-based analysis of
blockchains. Indeed, Eyal and Sirer [6] develop a Markov model to
analyze the success of the sel�sh mining attack on Nakamoto’s pro-
tocol. Our work, however, is the �rst to use Markov-based models
to analyze consistency against any adversary, and provides a gen-
eral framework to analyze speci�c attacks on various blockchain
protocols. Previous studies on consistency [7, 8, 16] have advocated
using Markov methods, but have considered them too complicated
to analyze: for instance, the authors of [16] write “the Markov chain
that arises from this problem is too complicated to analyze using
standard concentration bounds for Markov chains.” We show that
consistency of several blockchain protocols as well as the impact
of speci�c attacks are well-captured by natural Markov chains, and
can be analyzed using a judicious combination of (a) derivation of
steady-state distributions; (b) concentration bounds for generalized
Markov chains; (c) generating functions for deriving probability
of signi�cant events; and (d) simpli�cation of the Markov chain,
where appropriate. Even in cases, where we are unable to derive

2

Anonymous submission #586 to ACM CCS 2018

1 2 4 10 25 60 100
0

1
10

3
10

1
2

c (blocktime in terms of network delay �)

�
(A
dv
er
sa
ry

fr
ac
tio

n)

Delay attack from [16]
Consistency from [16]

Figure 1: Replication of [16, Fig. 1], “Minimumpercentage of
computing power an adversary must hold in order to break
consistency" using same parameters n = 105 and � = 1013,
p = 1

c� , but illustrating the new bound from our Thm. 4.4.

In subsequent work in 2017, Garay, Kiayas and Leonardos [8]
studied aspects of how the hardness p is adjusted as more players
join the protocol during epochs in the Nakamoto consensus protocol
and how this epoch must be su�ciently large to avoid certain
attacks. Techniques from this paper were also used to update [7];
in particular, the updated version of the latter extends the analysis
to the partially synchronous model but is not precise enough to
make concrete claims about the parameters.

1.1 Contributions
In this paper we show how Markov chains can be used to model
blockchain protocols to both simplify the analysis of blockchain
protocols and attacks and to make precise claims about parameter
relationships. To introduce our method, in §4.2 we show how to
replicate the analysis of Nakamoto’s protocol done by Pass et al. [16]
using a Markov model. We validate our method by recovering
essentially the same bound.

By inspecting this graphical Markov model, however, we discov-
ered cases in which the counting of events in [16] either over- or
under-counts a special event. Based on this insight, we propose a
new Markov model in §4.3 that exactly counts so called “conver-
gence opportunities” and thus leads to more accurate bounds on
consistency (see Thm 4.4). To illustrate this new result, Fig. 1 repli-
cates a graph from [16] showing a relationship between proof of
work hardness and adversary control. Against the original analysis
( ) and attack ( ), our new result from the Markov model
(??) shows higher resilience at lower parameters, and slightly less
resilience at higher parameters.

To further illustrate our technique, in §5we introduce Cliquechain,
a speci�c example of the Chainweb protocol [14] for which we can
use our techniques to show the same consistency lower-bound
as Nakamoto’s protocol. Chainweb proposes a blockchain proto-
col that creates a braid of various parallel chains. The main idea
is that at each level the chains reference each other according to
some base graph, and thus in order to replace one block in any

chain, you must also replace the blocks in the parallel chains that
reference it. The protocol claims to be able to handle 10K trans-
actions per second over hundreds or thousands of parallel chains,
but the analysis in the paper again only considers variations of the
50% attack. Our analysis on consistency does not support this 10k
claim. [Add in sentence supporting this last claim: bitcoin
can handle max 7 txns/sec, and CliqueChain provably can
only handle the same block rate as Nakamoto for the same
security lowerbound, so regardless of how many chain we
have with CliqueChain, either the blocks have to be bigger
(so � increases) or the individual block rate needs to increase
(so c is lower) in order to support more txns/sec. Either way
the security threshold is lowered]

In §6, we extend our techniques to establish that the protocol
GHOST [19] also has the same consistency lower bounds. GHOST’s
main claim is also that it can handle higher transaction rates than
Nakamoto’s protocol while being resilient to 50% attacks.

For each protocol we also analyze variants of attacks using our
technique and provide probability distributions for how long the
attacks last. In §4.4 we �rst show a very simple Markov model
that captures the ‘50% attack’ on Nakamoto presented in [16]. As
discussed so far, the notion of blockchain consistency considered in
the literature is still an asymptotic notion that requires the “proba-
bility of a fork” to fall exponentially with some parameter T . We
use this same attack model to answer very pragmatic questions
about blockchains: For example “how long should one wait before
con�rming a transaction?” While folklore holds that one should ig-
nore (i.e., wait for) the last T = 6 blocks, we provide a more precise
answer to this question by modeling an attack in which the goal
of the adversary is to “undo” a recently con�rmed transaction. We
show, for example, thatT = 6 is a surprisingly low default for chains
like Ethereum which use more aggressive network parameters.

Since this delay attack is not successful on GHOST, we present
another attack, the ‘Balancing Attack’, with a Markov chain in §6.4
which captures a simpli�ed version of the attack on GHOST.We use
this model to capture a lower bound on transaction con�rmation
time for the GHOST protocol in Fig. 13

Our work is not the �rst to employ Markov-based analysis of
blockchains. Indeed, Eyal and Sirer [6] develop a Markov model to
analyze the success of the sel�sh mining attack on Nakamoto’s pro-
tocol. Our work, however, is the �rst to use Markov-based models
to analyze consistency against any adversary, and provides a gen-
eral framework to analyze speci�c attacks on various blockchain
protocols. Previous studies on consistency [7, 8, 16] have advocated
using Markov methods, but have considered them too complicated
to analyze: for instance, the authors of [16] write “the Markov chain
that arises from this problem is too complicated to analyze using
standard concentration bounds for Markov chains.” We show that
consistency of several blockchain protocols as well as the impact
of speci�c attacks are well-captured by natural Markov chains, and
can be analyzed using a judicious combination of (a) derivation of
steady-state distributions; (b) concentration bounds for generalized
Markov chains; (c) generating functions for deriving probability
of signi�cant events; and (d) simpli�cation of the Markov chain,
where appropriate. Even in cases, where we are unable to derive

2

[Pass, Seeman and shelat 2016]

main parameters

∆ the network delay bound

p = 1
c·n∆ the mining hardness is expressed in terms of param-

eter c, roughly the expected number of network de-
lays before some block is mined

ρ the adversarial fraction of parties

µ = 1 − ρ the fraction of honest parties

Recall mining hardness is 

Previous Work on Nakamoto Consistency

Bitcoin



13

Anonymous submission #586 to ACM CCS 2018

1 2 4 10 25 60 100
0

1
10

3
10

1
2

c (blocktime in terms of network delay �)

�
(A
dv
er
sa
ry

fr
ac
tio

n)

Delay attack from [16]
Consistency from [16]

Figure 1: Replication of [16, Fig. 1], “Minimumpercentage of
computing power an adversary must hold in order to break
consistency" using same parameters n = 105 and � = 1013,
p = 1

c� , but illustrating the new bound from our Thm. 4.4.

In subsequent work in 2017, Garay, Kiayas and Leonardos [8]
studied aspects of how the hardness p is adjusted as more players
join the protocol during epochs in the Nakamoto consensus protocol
and how this epoch must be su�ciently large to avoid certain
attacks. Techniques from this paper were also used to update [7];
in particular, the updated version of the latter extends the analysis
to the partially synchronous model but is not precise enough to
make concrete claims about the parameters.

1.1 Contributions
In this paper we show how Markov chains can be used to model
blockchain protocols to both simplify the analysis of blockchain
protocols and attacks and to make precise claims about parameter
relationships. To introduce our method, in §4.2 we show how to
replicate the analysis of Nakamoto’s protocol done by Pass et al. [16]
using a Markov model. We validate our method by recovering
essentially the same bound.

By inspecting this graphical Markov model, however, we discov-
ered cases in which the counting of events in [16] either over- or
under-counts a special event. Based on this insight, we propose a
new Markov model in §4.3 that exactly counts so called “conver-
gence opportunities” and thus leads to more accurate bounds on
consistency (see Thm 4.4). To illustrate this new result, Fig. 1 repli-
cates a graph from [16] showing a relationship between proof of
work hardness and adversary control. Against the original analysis
( ) and attack ( ), our new result from the Markov model
(??) shows higher resilience at lower parameters, and slightly less
resilience at higher parameters.

To further illustrate our technique, in §5we introduce Cliquechain,
a speci�c example of the Chainweb protocol [14] for which we can
use our techniques to show the same consistency lower-bound
as Nakamoto’s protocol. Chainweb proposes a blockchain proto-
col that creates a braid of various parallel chains. The main idea
is that at each level the chains reference each other according to
some base graph, and thus in order to replace one block in any

chain, you must also replace the blocks in the parallel chains that
reference it. The protocol claims to be able to handle 10K trans-
actions per second over hundreds or thousands of parallel chains,
but the analysis in the paper again only considers variations of the
50% attack. Our analysis on consistency does not support this 10k
claim. [Add in sentence supporting this last claim: bitcoin
can handle max 7 txns/sec, and CliqueChain provably can
only handle the same block rate as Nakamoto for the same
security lowerbound, so regardless of how many chain we
have with CliqueChain, either the blocks have to be bigger
(so � increases) or the individual block rate needs to increase
(so c is lower) in order to support more txns/sec. Either way
the security threshold is lowered]

In §6, we extend our techniques to establish that the protocol
GHOST [19] also has the same consistency lower bounds. GHOST’s
main claim is also that it can handle higher transaction rates than
Nakamoto’s protocol while being resilient to 50% attacks.

For each protocol we also analyze variants of attacks using our
technique and provide probability distributions for how long the
attacks last. In §4.4 we �rst show a very simple Markov model
that captures the ‘50% attack’ on Nakamoto presented in [16]. As
discussed so far, the notion of blockchain consistency considered in
the literature is still an asymptotic notion that requires the “proba-
bility of a fork” to fall exponentially with some parameter T . We
use this same attack model to answer very pragmatic questions
about blockchains: For example “how long should one wait before
con�rming a transaction?” While folklore holds that one should ig-
nore (i.e., wait for) the last T = 6 blocks, we provide a more precise
answer to this question by modeling an attack in which the goal
of the adversary is to “undo” a recently con�rmed transaction. We
show, for example, thatT = 6 is a surprisingly low default for chains
like Ethereum which use more aggressive network parameters.

Since this delay attack is not successful on GHOST, we present
another attack, the ‘Balancing Attack’, with a Markov chain in §6.4
which captures a simpli�ed version of the attack on GHOST.We use
this model to capture a lower bound on transaction con�rmation
time for the GHOST protocol in Fig. 13

Our work is not the �rst to employ Markov-based analysis of
blockchains. Indeed, Eyal and Sirer [6] develop a Markov model to
analyze the success of the sel�sh mining attack on Nakamoto’s pro-
tocol. Our work, however, is the �rst to use Markov-based models
to analyze consistency against any adversary, and provides a gen-
eral framework to analyze speci�c attacks on various blockchain
protocols. Previous studies on consistency [7, 8, 16] have advocated
using Markov methods, but have considered them too complicated
to analyze: for instance, the authors of [16] write “the Markov chain
that arises from this problem is too complicated to analyze using
standard concentration bounds for Markov chains.” We show that
consistency of several blockchain protocols as well as the impact
of speci�c attacks are well-captured by natural Markov chains, and
can be analyzed using a judicious combination of (a) derivation of
steady-state distributions; (b) concentration bounds for generalized
Markov chains; (c) generating functions for deriving probability
of signi�cant events; and (d) simpli�cation of the Markov chain,
where appropriate. Even in cases, where we are unable to derive

2

Anonymous submission #586 to ACM CCS 2018

1 2 4 10 25 60 100
0

1
10

3
10

1
2

c (blocktime in terms of network delay �)

�
(A
dv
er
sa
ry

fr
ac
tio

n)

Delay attack from [16]
Consistency from [16]

Figure 1: Replication of [16, Fig. 1], “Minimumpercentage of
computing power an adversary must hold in order to break
consistency" using same parameters n = 105 and � = 1013,
p = 1

c� , but illustrating the new bound from our Thm. 4.4.

In subsequent work in 2017, Garay, Kiayas and Leonardos [8]
studied aspects of how the hardness p is adjusted as more players
join the protocol during epochs in the Nakamoto consensus protocol
and how this epoch must be su�ciently large to avoid certain
attacks. Techniques from this paper were also used to update [7];
in particular, the updated version of the latter extends the analysis
to the partially synchronous model but is not precise enough to
make concrete claims about the parameters.

1.1 Contributions
In this paper we show how Markov chains can be used to model
blockchain protocols to both simplify the analysis of blockchain
protocols and attacks and to make precise claims about parameter
relationships. To introduce our method, in §4.2 we show how to
replicate the analysis of Nakamoto’s protocol done by Pass et al. [16]
using a Markov model. We validate our method by recovering
essentially the same bound.

By inspecting this graphical Markov model, however, we discov-
ered cases in which the counting of events in [16] either over- or
under-counts a special event. Based on this insight, we propose a
new Markov model in §4.3 that exactly counts so called “conver-
gence opportunities” and thus leads to more accurate bounds on
consistency (see Thm 4.4). To illustrate this new result, Fig. 1 repli-
cates a graph from [16] showing a relationship between proof of
work hardness and adversary control. Against the original analysis
( ) and attack ( ), our new result from the Markov model
(??) shows higher resilience at lower parameters, and slightly less
resilience at higher parameters.

To further illustrate our technique, in §5we introduce Cliquechain,
a speci�c example of the Chainweb protocol [14] for which we can
use our techniques to show the same consistency lower-bound
as Nakamoto’s protocol. Chainweb proposes a blockchain proto-
col that creates a braid of various parallel chains. The main idea
is that at each level the chains reference each other according to
some base graph, and thus in order to replace one block in any

chain, you must also replace the blocks in the parallel chains that
reference it. The protocol claims to be able to handle 10K trans-
actions per second over hundreds or thousands of parallel chains,
but the analysis in the paper again only considers variations of the
50% attack. Our analysis on consistency does not support this 10k
claim. [Add in sentence supporting this last claim: bitcoin
can handle max 7 txns/sec, and CliqueChain provably can
only handle the same block rate as Nakamoto for the same
security lowerbound, so regardless of how many chain we
have with CliqueChain, either the blocks have to be bigger
(so � increases) or the individual block rate needs to increase
(so c is lower) in order to support more txns/sec. Either way
the security threshold is lowered]

In §6, we extend our techniques to establish that the protocol
GHOST [19] also has the same consistency lower bounds. GHOST’s
main claim is also that it can handle higher transaction rates than
Nakamoto’s protocol while being resilient to 50% attacks.

For each protocol we also analyze variants of attacks using our
technique and provide probability distributions for how long the
attacks last. In §4.4 we �rst show a very simple Markov model
that captures the ‘50% attack’ on Nakamoto presented in [16]. As
discussed so far, the notion of blockchain consistency considered in
the literature is still an asymptotic notion that requires the “proba-
bility of a fork” to fall exponentially with some parameter T . We
use this same attack model to answer very pragmatic questions
about blockchains: For example “how long should one wait before
con�rming a transaction?” While folklore holds that one should ig-
nore (i.e., wait for) the last T = 6 blocks, we provide a more precise
answer to this question by modeling an attack in which the goal
of the adversary is to “undo” a recently con�rmed transaction. We
show, for example, thatT = 6 is a surprisingly low default for chains
like Ethereum which use more aggressive network parameters.

Since this delay attack is not successful on GHOST, we present
another attack, the ‘Balancing Attack’, with a Markov chain in §6.4
which captures a simpli�ed version of the attack on GHOST.We use
this model to capture a lower bound on transaction con�rmation
time for the GHOST protocol in Fig. 13

Our work is not the �rst to employ Markov-based analysis of
blockchains. Indeed, Eyal and Sirer [6] develop a Markov model to
analyze the success of the sel�sh mining attack on Nakamoto’s pro-
tocol. Our work, however, is the �rst to use Markov-based models
to analyze consistency against any adversary, and provides a gen-
eral framework to analyze speci�c attacks on various blockchain
protocols. Previous studies on consistency [7, 8, 16] have advocated
using Markov methods, but have considered them too complicated
to analyze: for instance, the authors of [16] write “the Markov chain
that arises from this problem is too complicated to analyze using
standard concentration bounds for Markov chains.” We show that
consistency of several blockchain protocols as well as the impact
of speci�c attacks are well-captured by natural Markov chains, and
can be analyzed using a judicious combination of (a) derivation of
steady-state distributions; (b) concentration bounds for generalized
Markov chains; (c) generating functions for deriving probability
of signi�cant events; and (d) simpli�cation of the Markov chain,
where appropriate. Even in cases, where we are unable to derive

2

[Pass, Seeman and shelat 2016]

main parameters

∆ the network delay bound

p = 1
c·n∆ the mining hardness is expressed in terms of param-

eter c, roughly the expected number of network de-
lays before some block is mined

ρ the adversarial fraction of parties

µ = 1 − ρ the fraction of honest parties

Recall mining hardness is 

Previous Work on Nakamoto Consistency

BitcoinEthereum



Our Improved Analysis of Nakamoto Consistency

14

1 2 4 10 25 60 100
0

1
10

3
10

1
2

c (blocktime in terms of network delay ∆)

ρ
(A
dv

er
sa
ry

fra
ct
io
n)

Consistency from [PSS17]
Delay attack from [PSS17]
First Markov Model
Our Consistency Thm

Anonymous submission #586 to ACM CCS 2018

1 2 4 10 25 60 100
0

1
10

3
10

1
2

c (blocktime in terms of network delay �)

�
(A
dv
er
sa
ry

fr
ac
tio

n)

Delay attack from [16]
Consistency from [16]
Our First Markov Model
Our Consistency Thm

Figure 1: Replication of [16, Fig. 1], “Minimumpercentage of
computing power an adversary must hold in order to break
consistency" using same parameters n = 105 and � = 1013,
p = 1

c� , but illustrating the new bound from our Thm. 4.4.

In subsequent work in 2017, Garay, Kiayas and Leonardos [8]
studied aspects of how the hardness p is adjusted as more players
join the protocol during epochs in the Nakamoto consensus protocol
and how this epoch must be su�ciently large to avoid certain
attacks. Techniques from this paper were also used to update [7];
in particular, the updated version of the latter extends the analysis
to the partially synchronous model but is not precise enough to
make concrete claims about the parameters.

1.1 Contributions
In this paper we show how Markov chains can be used to model
blockchain protocols to both simplify the analysis of blockchain
protocols and attacks and to make precise claims about parameter
relationships. To introduce our method, in §4.2 we show how to
replicate the analysis of Nakamoto’s protocol done by Pass et al. [16]
using a Markov model. We validate our method by recovering
essentially the same bound.

By inspecting this graphical Markov model, however, we discov-
ered cases in which the counting of events in [16] either over- or
under-counts a special event. Based on this insight, we propose a
new Markov model in §4.3 that exactly counts so called “conver-
gence opportunities” and thus leads to more accurate bounds on
consistency (see Thm 4.4). To illustrate this new result, Fig. 1 repli-
cates a graph from [16] showing a relationship between proof of
work hardness and adversary control. Against the original analysis
( ) and attack ( ), our new result from the Markov model
( ) shows higher resilience at lower parameters, and slightly
less resilience at higher parameters.

To further illustrate our technique, in §5we introduce Cliquechain,
a speci�c example of the Chainweb protocol [14] for which we can
use our techniques to show the same consistency lower-bound
as Nakamoto’s protocol. Chainweb proposes a blockchain proto-
col that creates a braid of various parallel chains. The main idea
is that at each level the chains reference each other according to
some base graph, and thus in order to replace one block in any

chain, you must also replace the blocks in the parallel chains that
reference it. The protocol claims to be able to handle 10K trans-
actions per second over hundreds or thousands of parallel chains,
but the analysis in the paper again only considers variations of the
50% attack. Our analysis on consistency does not support this 10k
claim. [Add in sentence supporting this last claim: bitcoin
can handle max 7 txns/sec, and CliqueChain provably can
only handle the same block rate as Nakamoto for the same
security lowerbound, so regardless of how many chain we
have with CliqueChain, either the blocks have to be bigger
(so � increases) or the individual block rate needs to increase
(so c is lower) in order to support more txns/sec. Either way
the security threshold is lowered]

In §6, we extend our techniques to establish that the protocol
GHOST [19] also has the same consistency lower bounds. GHOST’s
main claim is also that it can handle higher transaction rates than
Nakamoto’s protocol while being resilient to 50% attacks.

For each protocol we also analyze variants of attacks using our
technique and provide probability distributions for how long the
attacks last. In §4.4 we �rst show a very simple Markov model
that captures the ‘50% attack’ on Nakamoto presented in [16]. As
discussed so far, the notion of blockchain consistency considered in
the literature is still an asymptotic notion that requires the “proba-
bility of a fork” to fall exponentially with some parameter T . We
use this same attack model to answer very pragmatic questions
about blockchains: For example “how long should one wait before
con�rming a transaction?” While folklore holds that one should ig-
nore (i.e., wait for) the last T = 6 blocks, we provide a more precise
answer to this question by modeling an attack in which the goal
of the adversary is to “undo” a recently con�rmed transaction. We
show, for example, thatT = 6 is a surprisingly low default for chains
like Ethereum which use more aggressive network parameters.

Since this delay attack is not successful on GHOST, we present
another attack, the ‘Balancing Attack’, with a Markov chain in §6.4
which captures a simpli�ed version of the attack on GHOST.We use
this model to capture a lower bound on transaction con�rmation
time for the GHOST protocol in Fig. 13

Our work is not the �rst to employ Markov-based analysis of
blockchains. Indeed, Eyal and Sirer [6] develop a Markov model to
analyze the success of the sel�sh mining attack on Nakamoto’s pro-
tocol. Our work, however, is the �rst to use Markov-based models
to analyze consistency against any adversary, and provides a gen-
eral framework to analyze speci�c attacks on various blockchain
protocols. Previous studies on consistency [7, 8, 16] have advocated
using Markov methods, but have considered them too complicated
to analyze: for instance, the authors of [16] write “the Markov chain
that arises from this problem is too complicated to analyze using
standard concentration bounds for Markov chains.” We show that
consistency of several blockchain protocols as well as the impact
of speci�c attacks are well-captured by natural Markov chains, and
can be analyzed using a judicious combination of (a) derivation of
steady-state distributions; (b) concentration bounds for generalized
Markov chains; (c) generating functions for deriving probability
of signi�cant events; and (d) simpli�cation of the Markov chain,
where appropriate. Even in cases, where we are unable to derive

2

Anonymous submission #586 to ACM CCS 2018

1 2 4 10 25 60 100
0

1
10

3
10

1
2

c (blocktime in terms of network delay �)

�
(A
dv
er
sa
ry

fr
ac
tio

n)

Delay attack from [16]
Consistency from [16]

Figure 1: Replication of [16, Fig. 1], “Minimumpercentage of
computing power an adversary must hold in order to break
consistency" using same parameters n = 105 and � = 1013,
p = 1

c� , but illustrating the new bound from our Thm. 4.4.

In subsequent work in 2017, Garay, Kiayas and Leonardos [8]
studied aspects of how the hardness p is adjusted as more players
join the protocol during epochs in the Nakamoto consensus protocol
and how this epoch must be su�ciently large to avoid certain
attacks. Techniques from this paper were also used to update [7];
in particular, the updated version of the latter extends the analysis
to the partially synchronous model but is not precise enough to
make concrete claims about the parameters.

1.1 Contributions
In this paper we show how Markov chains can be used to model
blockchain protocols to both simplify the analysis of blockchain
protocols and attacks and to make precise claims about parameter
relationships. To introduce our method, in §4.2 we show how to
replicate the analysis of Nakamoto’s protocol done by Pass et al. [16]
using a Markov model. We validate our method by recovering
essentially the same bound.

By inspecting this graphical Markov model, however, we discov-
ered cases in which the counting of events in [16] either over- or
under-counts a special event. Based on this insight, we propose a
new Markov model in §4.3 that exactly counts so called “conver-
gence opportunities” and thus leads to more accurate bounds on
consistency (see Thm 4.4). To illustrate this new result, Fig. 1 repli-
cates a graph from [16] showing a relationship between proof of
work hardness and adversary control. Against the original analysis
( ) and attack ( ), our new result from the Markov model
(??) shows higher resilience at lower parameters, and slightly less
resilience at higher parameters.

To further illustrate our technique, in §5we introduce Cliquechain,
a speci�c example of the Chainweb protocol [14] for which we can
use our techniques to show the same consistency lower-bound
as Nakamoto’s protocol. Chainweb proposes a blockchain proto-
col that creates a braid of various parallel chains. The main idea
is that at each level the chains reference each other according to
some base graph, and thus in order to replace one block in any

chain, you must also replace the blocks in the parallel chains that
reference it. The protocol claims to be able to handle 10K trans-
actions per second over hundreds or thousands of parallel chains,
but the analysis in the paper again only considers variations of the
50% attack. Our analysis on consistency does not support this 10k
claim. [Add in sentence supporting this last claim: bitcoin
can handle max 7 txns/sec, and CliqueChain provably can
only handle the same block rate as Nakamoto for the same
security lowerbound, so regardless of how many chain we
have with CliqueChain, either the blocks have to be bigger
(so � increases) or the individual block rate needs to increase
(so c is lower) in order to support more txns/sec. Either way
the security threshold is lowered]

In §6, we extend our techniques to establish that the protocol
GHOST [19] also has the same consistency lower bounds. GHOST’s
main claim is also that it can handle higher transaction rates than
Nakamoto’s protocol while being resilient to 50% attacks.

For each protocol we also analyze variants of attacks using our
technique and provide probability distributions for how long the
attacks last. In §4.4 we �rst show a very simple Markov model
that captures the ‘50% attack’ on Nakamoto presented in [16]. As
discussed so far, the notion of blockchain consistency considered in
the literature is still an asymptotic notion that requires the “proba-
bility of a fork” to fall exponentially with some parameter T . We
use this same attack model to answer very pragmatic questions
about blockchains: For example “how long should one wait before
con�rming a transaction?” While folklore holds that one should ig-
nore (i.e., wait for) the last T = 6 blocks, we provide a more precise
answer to this question by modeling an attack in which the goal
of the adversary is to “undo” a recently con�rmed transaction. We
show, for example, thatT = 6 is a surprisingly low default for chains
like Ethereum which use more aggressive network parameters.

Since this delay attack is not successful on GHOST, we present
another attack, the ‘Balancing Attack’, with a Markov chain in §6.4
which captures a simpli�ed version of the attack on GHOST.We use
this model to capture a lower bound on transaction con�rmation
time for the GHOST protocol in Fig. 13

Our work is not the �rst to employ Markov-based analysis of
blockchains. Indeed, Eyal and Sirer [6] develop a Markov model to
analyze the success of the sel�sh mining attack on Nakamoto’s pro-
tocol. Our work, however, is the �rst to use Markov-based models
to analyze consistency against any adversary, and provides a gen-
eral framework to analyze speci�c attacks on various blockchain
protocols. Previous studies on consistency [7, 8, 16] have advocated
using Markov methods, but have considered them too complicated
to analyze: for instance, the authors of [16] write “the Markov chain
that arises from this problem is too complicated to analyze using
standard concentration bounds for Markov chains.” We show that
consistency of several blockchain protocols as well as the impact
of speci�c attacks are well-captured by natural Markov chains, and
can be analyzed using a judicious combination of (a) derivation of
steady-state distributions; (b) concentration bounds for generalized
Markov chains; (c) generating functions for deriving probability
of signi�cant events; and (d) simpli�cation of the Markov chain,
where appropriate. Even in cases, where we are unable to derive

2

Anonymous submission #586 to ACM CCS 2018

1 2 4 10 25 60 100
0

1
10

3
10

1
2

c (blocktime in terms of network delay �)

�
(A
dv
er
sa
ry

fr
ac
tio

n)

Delay attack from [16]
Consistency from [16]
Our First Markov Model

Figure 1: Replication of [16, Fig. 1], “Minimumpercentage of
computing power an adversary must hold in order to break
consistency" using same parameters n = 105 and � = 1013,
p = 1

c� , but illustrating the new bound from our Thm. 4.4.

In subsequent work in 2017, Garay, Kiayas and Leonardos [8]
studied aspects of how the hardness p is adjusted as more players
join the protocol during epochs in the Nakamoto consensus protocol
and how this epoch must be su�ciently large to avoid certain
attacks. Techniques from this paper were also used to update [7];
in particular, the updated version of the latter extends the analysis
to the partially synchronous model but is not precise enough to
make concrete claims about the parameters.

1.1 Contributions
In this paper we show how Markov chains can be used to model
blockchain protocols to both simplify the analysis of blockchain
protocols and attacks and to make precise claims about parameter
relationships. To introduce our method, in §4.2 we show how to
replicate the analysis of Nakamoto’s protocol done by Pass et al. [16]
using a Markov model. We validate our method by recovering
essentially the same bound.

By inspecting this graphical Markov model, however, we discov-
ered cases in which the counting of events in [16] either over- or
under-counts a special event. Based on this insight, we propose a
new Markov model in §4.3 that exactly counts so called “conver-
gence opportunities” and thus leads to more accurate bounds on
consistency (see Thm 4.4). To illustrate this new result, Fig. 1 repli-
cates a graph from [16] showing a relationship between proof of
work hardness and adversary control. Against the original analysis
( ) and attack ( ), our new result from the Markov model
( ) shows higher resilience at lower parameters, and slightly
less resilience at higher parameters.

To further illustrate our technique, in §5we introduce Cliquechain,
a speci�c example of the Chainweb protocol [14] for which we can
use our techniques to show the same consistency lower-bound
as Nakamoto’s protocol. Chainweb proposes a blockchain proto-
col that creates a braid of various parallel chains. The main idea
is that at each level the chains reference each other according to
some base graph, and thus in order to replace one block in any

chain, you must also replace the blocks in the parallel chains that
reference it. The protocol claims to be able to handle 10K trans-
actions per second over hundreds or thousands of parallel chains,
but the analysis in the paper again only considers variations of the
50% attack. Our analysis on consistency does not support this 10k
claim. [Add in sentence supporting this last claim: bitcoin
can handle max 7 txns/sec, and CliqueChain provably can
only handle the same block rate as Nakamoto for the same
security lowerbound, so regardless of how many chain we
have with CliqueChain, either the blocks have to be bigger
(so � increases) or the individual block rate needs to increase
(so c is lower) in order to support more txns/sec. Either way
the security threshold is lowered]

In §6, we extend our techniques to establish that the protocol
GHOST [19] also has the same consistency lower bounds. GHOST’s
main claim is also that it can handle higher transaction rates than
Nakamoto’s protocol while being resilient to 50% attacks.

For each protocol we also analyze variants of attacks using our
technique and provide probability distributions for how long the
attacks last. In §4.4 we �rst show a very simple Markov model
that captures the ‘50% attack’ on Nakamoto presented in [16]. As
discussed so far, the notion of blockchain consistency considered in
the literature is still an asymptotic notion that requires the “proba-
bility of a fork” to fall exponentially with some parameter T . We
use this same attack model to answer very pragmatic questions
about blockchains: For example “how long should one wait before
con�rming a transaction?” While folklore holds that one should ig-
nore (i.e., wait for) the last T = 6 blocks, we provide a more precise
answer to this question by modeling an attack in which the goal
of the adversary is to “undo” a recently con�rmed transaction. We
show, for example, thatT = 6 is a surprisingly low default for chains
like Ethereum which use more aggressive network parameters.

Since this delay attack is not successful on GHOST, we present
another attack, the ‘Balancing Attack’, with a Markov chain in §6.4
which captures a simpli�ed version of the attack on GHOST.We use
this model to capture a lower bound on transaction con�rmation
time for the GHOST protocol in Fig. 13

Our work is not the �rst to employ Markov-based analysis of
blockchains. Indeed, Eyal and Sirer [6] develop a Markov model to
analyze the success of the sel�sh mining attack on Nakamoto’s pro-
tocol. Our work, however, is the �rst to use Markov-based models
to analyze consistency against any adversary, and provides a gen-
eral framework to analyze speci�c attacks on various blockchain
protocols. Previous studies on consistency [7, 8, 16] have advocated
using Markov methods, but have considered them too complicated
to analyze: for instance, the authors of [16] write “the Markov chain
that arises from this problem is too complicated to analyze using
standard concentration bounds for Markov chains.” We show that
consistency of several blockchain protocols as well as the impact
of speci�c attacks are well-captured by natural Markov chains, and
can be analyzed using a judicious combination of (a) derivation of
steady-state distributions; (b) concentration bounds for generalized
Markov chains; (c) generating functions for deriving probability
of signi�cant events; and (d) simpli�cation of the Markov chain,
where appropriate. Even in cases, where we are unable to derive

2

[PSS16]

[PSS16]

Anonymous submission #586 to ACM CCS 2018

1 2 4 10 25 60 100
0

1
10

3
10

1
2

c (blocktime in terms of network delay �)

�
(A
dv
er
sa
ry

fr
ac
tio

n)

Delay attack from [16]
Consistency from [16]
Our First Markov Model
Our Consistency Thm

Figure 1: Replication of [16, Fig. 1], “Minimumpercentage of
computing power an adversary must hold in order to break
consistency" using same parameters n = 105 and � = 1013,
p = 1

c� , but illustrating the new bound from our Thm. 4.4.

In subsequent work in 2017, Garay, Kiayas and Leonardos [8]
studied aspects of how the hardness p is adjusted as more players
join the protocol during epochs in the Nakamoto consensus protocol
and how this epoch must be su�ciently large to avoid certain
attacks. Techniques from this paper were also used to update [7];
in particular, the updated version of the latter extends the analysis
to the partially synchronous model but is not precise enough to
make concrete claims about the parameters.

1.1 Contributions
In this paper we show how Markov chains can be used to model
blockchain protocols to both simplify the analysis of blockchain
protocols and attacks and to make precise claims about parameter
relationships. To introduce our method, in §4.2 we show how to
replicate the analysis of Nakamoto’s protocol done by Pass et al. [16]
using a Markov model. We validate our method by recovering
essentially the same bound.

By inspecting this graphical Markov model, however, we discov-
ered cases in which the counting of events in [16] either over- or
under-counts a special event. Based on this insight, we propose a
new Markov model in §4.3 that exactly counts so called “conver-
gence opportunities” and thus leads to more accurate bounds on
consistency (see Thm 4.4). To illustrate this new result, Fig. 1 repli-
cates a graph from [16] showing a relationship between proof of
work hardness and adversary control. Against the original analysis
( ) and attack ( ), our new result from the Markov model
( ) shows higher resilience at lower parameters, and slightly
less resilience at higher parameters.

To further illustrate our technique, in §5we introduce Cliquechain,
a speci�c example of the Chainweb protocol [14] for which we can
use our techniques to show the same consistency lower-bound
as Nakamoto’s protocol. Chainweb proposes a blockchain proto-
col that creates a braid of various parallel chains. The main idea
is that at each level the chains reference each other according to
some base graph, and thus in order to replace one block in any

chain, you must also replace the blocks in the parallel chains that
reference it. The protocol claims to be able to handle 10K trans-
actions per second over hundreds or thousands of parallel chains,
but the analysis in the paper again only considers variations of the
50% attack. Our analysis on consistency does not support this 10k
claim. [Add in sentence supporting this last claim: bitcoin
can handle max 7 txns/sec, and CliqueChain provably can
only handle the same block rate as Nakamoto for the same
security lowerbound, so regardless of how many chain we
have with CliqueChain, either the blocks have to be bigger
(so � increases) or the individual block rate needs to increase
(so c is lower) in order to support more txns/sec. Either way
the security threshold is lowered]

In §6, we extend our techniques to establish that the protocol
GHOST [19] also has the same consistency lower bounds. GHOST’s
main claim is also that it can handle higher transaction rates than
Nakamoto’s protocol while being resilient to 50% attacks.

For each protocol we also analyze variants of attacks using our
technique and provide probability distributions for how long the
attacks last. In §4.4 we �rst show a very simple Markov model
that captures the ‘50% attack’ on Nakamoto presented in [16]. As
discussed so far, the notion of blockchain consistency considered in
the literature is still an asymptotic notion that requires the “proba-
bility of a fork” to fall exponentially with some parameter T . We
use this same attack model to answer very pragmatic questions
about blockchains: For example “how long should one wait before
con�rming a transaction?” While folklore holds that one should ig-
nore (i.e., wait for) the last T = 6 blocks, we provide a more precise
answer to this question by modeling an attack in which the goal
of the adversary is to “undo” a recently con�rmed transaction. We
show, for example, thatT = 6 is a surprisingly low default for chains
like Ethereum which use more aggressive network parameters.

Since this delay attack is not successful on GHOST, we present
another attack, the ‘Balancing Attack’, with a Markov chain in §6.4
which captures a simpli�ed version of the attack on GHOST.We use
this model to capture a lower bound on transaction con�rmation
time for the GHOST protocol in Fig. 13

Our work is not the �rst to employ Markov-based analysis of
blockchains. Indeed, Eyal and Sirer [6] develop a Markov model to
analyze the success of the sel�sh mining attack on Nakamoto’s pro-
tocol. Our work, however, is the �rst to use Markov-based models
to analyze consistency against any adversary, and provides a gen-
eral framework to analyze speci�c attacks on various blockchain
protocols. Previous studies on consistency [7, 8, 16] have advocated
using Markov methods, but have considered them too complicated
to analyze: for instance, the authors of [16] write “the Markov chain
that arises from this problem is too complicated to analyze using
standard concentration bounds for Markov chains.” We show that
consistency of several blockchain protocols as well as the impact
of speci�c attacks are well-captured by natural Markov chains, and
can be analyzed using a judicious combination of (a) derivation of
steady-state distributions; (b) concentration bounds for generalized
Markov chains; (c) generating functions for deriving probability
of signi�cant events; and (d) simpli�cation of the Markov chain,
where appropriate. Even in cases, where we are unable to derive

2

main parameters

∆ the network delay bound

p = 1
c·n∆ the mining hardness is expressed in terms of param-

eter c, roughly the expected number of network de-
lays before some block is mined

ρ the adversarial fraction of parties

µ = 1 − ρ the fraction of honest parties

Recall mining hardness is 



simple markov model of convergence opportunity

S0 S1

hit ≤ ∆

∆

hit, hit ≤ ∆

hit +∆

Complete model

Summary of Main Results

• A Markov-based method for analyzing consistency

• Better consistency bound for Nakamoto Protocol

• Analysis of a family of Delay Attacks

• Analysis of confirmation time for transactions

• Analysis of consistency for Cliquechain and GHOST

• Balancing attack for GHOST

15

S0

S−1 Sx
a′′ ∆ + h

h

S1 S2 S3

h′ h′ h′ h′

a′a′ a′

a aaa

P0(k): Prob of passing through k bad edges before state SX

analyzing ghost

∆H27i
(l − 1, r)

∆H27i
(l, r)

P(l − 1, r)

P(l, r − 1)

P(l, r) P(l + 1, r)

∆`B;?i
(l, r − 1)

∆`B;?i
(l, r)

hr∆

∆7`22

hl∆, al∆ hr

al

hl hr∆, ar∆

hl∆

∆7`22

ar

al

Anonymous submission #586 to ACM CCS 2018

L���� 5.1 (Cliquechain Chain Growth). For any � > 0, the
growth of themain chain of any honest player in anm-chain Cliquechain
protocol inT rounds is at leastT (1�� ) µ

�(c+µ ) , except with probabil-
ity that drops exponentially in T .

L���� 5.2 (Cliquechain Block Expiry). There exists a � 2
(0, 1) such that if µ � ��, then every adversarial block expires.

5.3 Convergence Opportunities
Recall that “convergence opportunities” are events at the end of
which all honest players agree on a single chain. A convergence
opportunity has 3 parts: � rounds where no honest player mines a
block, a single honest block mined (termed a ‘hit’), then another �
rounds where no honest player mines a block. After a convergence
opportunity in Cliquechain, all honest players agree that the con-
vergence opportunity block is in the longest Cliquechain, and any
blocks they now mine on must be consistent with this block.

L���� 5.3. At the end of a convergence opportunity (� silence +
single honest hit +� silence), all honest players in Cliquechain start
working on blocks consistent with the honest hit block.

For a proof sketch of this lemma refer to Appendix D. From
the above we get that any convergence opportunity in Nakamoto
is also a convergence opportunity in Cliquechain. Thus we can
use the convergence opportunity count we derived in §4.3. We
have already shown that block expiry in Cliquechain is satis�ed
under the same conditions as Nakamoto. Thus, we can extend the
consistency theorem of Nakamoto’s protocol to Cliquechain.

C�������� 5.4. Cliquechain satis�es consistency under the same
conditions as stated in Theorem 4.4.

5.4 Cliquechain Consensus Attacks
We evaluate how Cliquechain preforms under a version of the
delay attack of [16]. This attack works on Cliquechain similarly to
how it works on Nakamoto’s protocol. The goal of the adversary
is to delay all honest messages the maximum amount which is
�. The adversary’s strategy is to maximize wasted honest work
by having honest miners work on blocks they don’t know have
already been mined, therefore delaying the growth of the honest
chain(s) while the adversary mines e�ciently on their own secret
chain. With Cliquechain, this attack is thwarted by the fact that the
honest players split their mining power among all chains, so if a
block is mined and delayed on one chain, the honest miners on the
remaining chains that don’t yet have a block on that level, are not
wasting work during that � delay.

To evaluate these attacks we construct Markov models which
represent all possible scenarios of how honest blocks are mined
in a layer of Cliquechain. Crucial to this analysis is the fact that
in Cliquechain no blocks in a new layer can be mined until the
previous full layer is mined. Thus all variations of how a layer is
mined can restart once the full layer has been mined. Figure 8 shows
our Markov models for the 1,2 and 3-chain Cliquechain protocols,
with 1-chain being just the Nakamoto delay attack.

For all models, state S0 represents the state where miners are
mining a fresh new layer, and Si is the state where i chains have a

A0 A1 A2

A0 A1 A2

B0 B1 B2

A0 A1 A2

B0 B1 B2

C0 C1 C2

Figure 7: 1, 2, and 3-chain Cliquechain examples where the
solid line represents a block pointing to a parent block in its
chain, and a dotted line represents a block cross-referencing
another chain. Notice 1-chain is simply Nakamoto’s proto-
col. In anm-chain Cliquechain protocol each block at layer
` points directly their parent (the ` � 1 block of their chain)
plus references to a block in eachm � 1 of the other chains.

1-chain

S0

hit +�

2-chain

S0 S1
Hit

�+Hit + �

hit � +�

3-chain

S0 S1 S2
Hit �+ Hit

Hit  �, +�

�+ Hit +�

C
B

A

Figure 8: Markov chain models capturing the delay attack
on 1, 2 and 3-chain Cliquechain protocols.

block at that layer. We say an attack succeeds if the expected time
for the honest players to mine a block in this model is more than
the expected time for an adversary to mine a block e�ciently. The
expected time for an honest player to mine a block is the expected
time to leave state S0 and get back to state S0 divided by the number
of chains (i.e. how many blocks were added to the honest full braid).

The 1-chain analysis is just the Nakamoto analysis, we analyze
the 2-chain and 3-chain attack in to Appendix E. Figure 9 shows the

10

Anonymous submission #586 to ACM CCS 2018

L���� 5.1 (Cliquechain Chain Growth). For any � > 0, the
growth of themain chain of any honest player in anm-chain Cliquechain
protocol inT rounds is at leastT (1�� ) µ

�(c+µ ) , except with probabil-
ity that drops exponentially in T .

L���� 5.2 (Cliquechain Block Expiry). There exists a � 2
(0, 1) such that if µ � ��, then every adversarial block expires.

5.3 Convergence Opportunities
Recall that “convergence opportunities” are events at the end of
which all honest players agree on a single chain. A convergence
opportunity has 3 parts: � rounds where no honest player mines a
block, a single honest block mined (termed a ‘hit’), then another �
rounds where no honest player mines a block. After a convergence
opportunity in Cliquechain, all honest players agree that the con-
vergence opportunity block is in the longest Cliquechain, and any
blocks they now mine on must be consistent with this block.

L���� 5.3. At the end of a convergence opportunity (� silence +
single honest hit +� silence), all honest players in Cliquechain start
working on blocks consistent with the honest hit block.

For a proof sketch of this lemma refer to Appendix D. From
the above we get that any convergence opportunity in Nakamoto
is also a convergence opportunity in Cliquechain. Thus we can
use the convergence opportunity count we derived in §4.3. We
have already shown that block expiry in Cliquechain is satis�ed
under the same conditions as Nakamoto. Thus, we can extend the
consistency theorem of Nakamoto’s protocol to Cliquechain.

C�������� 5.4. Cliquechain satis�es consistency under the same
conditions as stated in Theorem 4.4.

5.4 Cliquechain Consensus Attacks
We evaluate how Cliquechain preforms under a version of the
delay attack of [16]. This attack works on Cliquechain similarly to
how it works on Nakamoto’s protocol. The goal of the adversary
is to delay all honest messages the maximum amount which is
�. The adversary’s strategy is to maximize wasted honest work
by having honest miners work on blocks they don’t know have
already been mined, therefore delaying the growth of the honest
chain(s) while the adversary mines e�ciently on their own secret
chain. With Cliquechain, this attack is thwarted by the fact that the
honest players split their mining power among all chains, so if a
block is mined and delayed on one chain, the honest miners on the
remaining chains that don’t yet have a block on that level, are not
wasting work during that � delay.

To evaluate these attacks we construct Markov models which
represent all possible scenarios of how honest blocks are mined
in a layer of Cliquechain. Crucial to this analysis is the fact that
in Cliquechain no blocks in a new layer can be mined until the
previous full layer is mined. Thus all variations of how a layer is
mined can restart once the full layer has been mined. Figure 8 shows
our Markov models for the 1,2 and 3-chain Cliquechain protocols,
with 1-chain being just the Nakamoto delay attack.

For all models, state S0 represents the state where miners are
mining a fresh new layer, and Si is the state where i chains have a

A0 A1 A2

A0 A1 A2

B0 B1 B2

A0 A1 A2

B0 B1 B2

C0 C1 C2

Figure 7: 1, 2, and 3-chain Cliquechain examples where the
solid line represents a block pointing to a parent block in its
chain, and a dotted line represents a block cross-referencing
another chain. Notice 1-chain is simply Nakamoto’s proto-
col. In anm-chain Cliquechain protocol each block at layer
` points directly their parent (the ` � 1 block of their chain)
plus references to a block in eachm � 1 of the other chains.

1-chain

S0

hit +�

2-chain

S0 S1
Hit

�+Hit + �

hit � +�

3-chain

S0 S1 S2
Hit �+ Hit

Hit  �, +�

�+ Hit +�

C
B

A

Figure 8: Markov chain models capturing the delay attack
on 1, 2 and 3-chain Cliquechain protocols.

block at that layer. We say an attack succeeds if the expected time
for the honest players to mine a block in this model is more than
the expected time for an adversary to mine a block e�ciently. The
expected time for an honest player to mine a block is the expected
time to leave state S0 and get back to state S0 divided by the number
of chains (i.e. how many blocks were added to the honest full braid).

The 1-chain analysis is just the Nakamoto analysis, we analyze
the 2-chain and 3-chain attack in to Appendix E. Figure 9 shows the

10

Anonymous submission #586 to ACM CCS 2018

L���� 5.1 (Cliquechain Chain Growth). For any � > 0, the
growth of themain chain of any honest player in anm-chain Cliquechain
protocol inT rounds is at leastT (1�� ) µ

�(c+µ ) , except with probabil-
ity that drops exponentially in T .

L���� 5.2 (Cliquechain Block Expiry). There exists a � 2
(0, 1) such that if µ � ��, then every adversarial block expires.

5.3 Convergence Opportunities
Recall that “convergence opportunities” are events at the end of
which all honest players agree on a single chain. A convergence
opportunity has 3 parts: � rounds where no honest player mines a
block, a single honest block mined (termed a ‘hit’), then another �
rounds where no honest player mines a block. After a convergence
opportunity in Cliquechain, all honest players agree that the con-
vergence opportunity block is in the longest Cliquechain, and any
blocks they now mine on must be consistent with this block.

L���� 5.3. At the end of a convergence opportunity (� silence +
single honest hit +� silence), all honest players in Cliquechain start
working on blocks consistent with the honest hit block.

For a proof sketch of this lemma refer to Appendix D. From
the above we get that any convergence opportunity in Nakamoto
is also a convergence opportunity in Cliquechain. Thus we can
use the convergence opportunity count we derived in §4.3. We
have already shown that block expiry in Cliquechain is satis�ed
under the same conditions as Nakamoto. Thus, we can extend the
consistency theorem of Nakamoto’s protocol to Cliquechain.

C�������� 5.4. Cliquechain satis�es consistency under the same
conditions as stated in Theorem 4.4.

5.4 Cliquechain Consensus Attacks
We evaluate how Cliquechain preforms under a version of the
delay attack of [16]. This attack works on Cliquechain similarly to
how it works on Nakamoto’s protocol. The goal of the adversary
is to delay all honest messages the maximum amount which is
�. The adversary’s strategy is to maximize wasted honest work
by having honest miners work on blocks they don’t know have
already been mined, therefore delaying the growth of the honest
chain(s) while the adversary mines e�ciently on their own secret
chain. With Cliquechain, this attack is thwarted by the fact that the
honest players split their mining power among all chains, so if a
block is mined and delayed on one chain, the honest miners on the
remaining chains that don’t yet have a block on that level, are not
wasting work during that � delay.

To evaluate these attacks we construct Markov models which
represent all possible scenarios of how honest blocks are mined
in a layer of Cliquechain. Crucial to this analysis is the fact that
in Cliquechain no blocks in a new layer can be mined until the
previous full layer is mined. Thus all variations of how a layer is
mined can restart once the full layer has been mined. Figure 8 shows
our Markov models for the 1,2 and 3-chain Cliquechain protocols,
with 1-chain being just the Nakamoto delay attack.

For all models, state S0 represents the state where miners are
mining a fresh new layer, and Si is the state where i chains have a

A0 A1 A2

A0 A1 A2

B0 B1 B2

A0 A1 A2

B0 B1 B2

C0 C1 C2

Figure 7: 1, 2, and 3-chain Cliquechain examples where the
solid line represents a block pointing to a parent block in its
chain, and a dotted line represents a block cross-referencing
another chain. Notice 1-chain is simply Nakamoto’s proto-
col. In anm-chain Cliquechain protocol each block at layer
` points directly their parent (the ` � 1 block of their chain)
plus references to a block in eachm � 1 of the other chains.

1-chain

S0

hit +�

2-chain

S0 S1
Hit

�+Hit + �

hit � +�

3-chain

S0 S1 S2
Hit �+ Hit

Hit  �, +�

�+ Hit +�

C
B

A

Figure 8: Markov chain models capturing the delay attack
on 1, 2 and 3-chain Cliquechain protocols.

block at that layer. We say an attack succeeds if the expected time
for the honest players to mine a block in this model is more than
the expected time for an adversary to mine a block e�ciently. The
expected time for an honest player to mine a block is the expected
time to leave state S0 and get back to state S0 divided by the number
of chains (i.e. how many blocks were added to the honest full braid).

The 1-chain analysis is just the Nakamoto analysis, we analyze
the 2-chain and 3-chain attack in to Appendix E. Figure 9 shows the

10



Roadmap

1. How to analyze consistency

2. Our analysis on Nakamoto consistency

3. An attack on Nakamoto consistency

4. Cliquechain consistency and attack

5. GHOST consistency and attack

15



HOW TO ANALYZE CONSISTENCY

16



Why does it work?

Period when nobody 
succeeds in mining. 
Everyone has same 
blockchain with 
block A at the top.

17

Why does it work?



Why does it work?

Period when nobody 
succeeds in mining. 
Everyone has same 
blockchain with 
block A at the top.

Eureka! BOB finds a block B & broadcasts it.

17

Why does it work?



Why does it work?

Period when nobody 
succeeds in mining. 
Everyone has same 
blockchain with 
block A at the top.

Block B is being transmitted 
over the network to all other 
miners.

Eureka! BOB finds a block B & broadcasts it.

17

Why does it work?



Why does it work?

Period when nobody 
succeeds in mining. 
Everyone has same 
blockchain with 
block A at the top.

Block B is being transmitted 
over the network to all other 
miners.

Network Delay{
Eureka! BOB finds a block B & broadcasts it.

17

Why does it work?



Why does it work?

Period when nobody 
succeeds in mining. 
Everyone has same 
blockchain with 
block A at the top.

Block B is being transmitted 
over the network to all other 
miners.

All miners have received B. 
They now begin mining using 
B as the previous block.

Network Delay{
Eureka! BOB finds a block B & broadcasts it.

17

Why does it work?



What could go wrong?

Some miners received B first, some received C 
first. Network is trying to extend both B and C.

Eureka! ALICE finds a block C & broadcasts it.

Block C is being transmitted 
over the network.

A

B C

Period when nobody 
succeeds in mining. 
Everyone has same 
blockchain with 
block A at the top.

Block B is being transmitted 
over the network to all other 
miners.

Eureka! BOB finds a block B & broadcasts it.

18

Why does it work?



It could happen again

A

B C

B C D E F

E D F

What prevents 
forking ad nauseum?

19

It could happen again



Network delay vs mining hardness

Network delay

Eureka! Eureka!

Expected time to mine

20

Network delay vs mining hardness



Network delay vs mining hardness

Network delay

Eureka! Eureka!

Expected time to mine

Convergence Opportunity (     +hit+     ): 
1.      rounds where no one mines (everyone hears about all blocks) 
2. One player mines a block (single longest chain) 
3. Another       rounds where no one mines (everyone hears about that block)

20

Network delay vs mining hardness



Network delay vs mining hardness

Network delay

Eureka! Eureka!

Expected time to mine

Convergence Opportunity (     +hit+     ): 
1.      rounds where no one mines (everyone hears about all blocks) 
2. One player mines a block (single longest chain) 
3. Another       rounds where no one mines (everyone hears about that block)

20

Network delay vs mining hardness



Network delay vs mining hardness

Network delay

Eureka! Eureka!

Expected time to mine

Convergence Opportunity (     +hit+     ): 
1.      rounds where no one mines (everyone hears about all blocks) 
2. One player mines a block (single longest chain) 
3. Another       rounds where no one mines (everyone hears about that block)

20

Network delay vs mining hardness



Network delay vs mining hardness

Network delay

Eureka! Eureka!

Expected time to mine

Convergence Opportunity (     +hit+     ): 
1.      rounds where no one mines (everyone hears about all blocks) 
2. One player mines a block (single longest chain) 
3. Another       rounds where no one mines (everyone hears about that block)

20

Network delay vs mining hardness



Network delay vs mining hardness

Network delay

Eureka! Eureka!

Expected time to mine

Convergence Opportunity (     +hit+     ): 
1.      rounds where no one mines (everyone hears about all blocks) 
2. One player mines a block (single longest chain) 
3. Another       rounds where no one mines (everyone hears about that block)

—> everyone agrees (2.) is the longest chain
20

Network delay vs mining hardness



Network delay vs mining hardness

Network delay

Eureka! Eureka!

Expected time to mine

Convergence Opportunity (     +hit+     ): 
1.      rounds where no honest player mines (everyone hears about all blocks) 
2. One honest player mines a block (single longest chain) 
3. Another      rounds where no honest player mines

(everyone hears about that block)

—> every honest player agrees (2.) is the longest chain
21

Network delay vs mining hardness



Network delay vs mining hardness

Network delay

Eureka! Eureka!

Expected time to mine

Convergence Opportunity (     +hit+     ) 

21

Network delay vs mining hardness

Analysis: In order to break consistency, adversary must break all COs



COUNTING CONVERGENCE 
OPPORTUNITIES

22



r r+T

23



r r+T

r r+T= Honest Hit (Block)

23



r r+T

= Silent period of at least 
           rounds  

r r+T= Honest Hit (Block)

23



r r+T

r r+T= Honest Hit (Block)

= Silent period of at least 
           rounds  
= Adversary Hit

23



r r+T

r r+T= Honest Hit (Block)

= Silent period of at least 
           rounds  
= Adversary Hit

23

Analysis: In order to break consistency, adversary must break all COs 
Goal: 
• Count expected number of COs 
• Compare with expected number of blocks the adversary can mine



r r+T

r r+T= Honest Hit (Block)

24

Analysis: In order to break consistency, adversary must break all COs 
Goal: 
• Count expected number of COs 
• Compare with expected number of blocks the adversary can mine



Roadmap

1. How to analyze consistency

2. Our analysis on Nakamoto consistency

3. An attack on Nakamoto consistency

4. Cliquechain consistency and attack

5. GHOST consistency and attack

15



SIMPLE MARKOV MODEL OF CONVERGENCE OPPORTUNITYsimple markov model of convergence opportunity

S0 S1

hit ≤ ∆

∆

hit, hit ≤ ∆

hit +∆

A simple Markov model with two states

26



SIMPLE MARKOV MODEL OF CONVERGENCE OPPORTUNITYsimple markov model of convergence opportunity

S0 S1

hit ≤ ∆

∆

hit, hit ≤ ∆

hit +∆

“Messy” state S0 and back if hit within ∆

26



SIMPLE MARKOV MODEL OF CONVERGENCE OPPORTUNITYsimple markov model of convergence opportunity

S0 S1

hit ≤ ∆

∆

hit, hit ≤ ∆

hit +∆

Transition to S1 aǕter quiet period

26



SIMPLE MARKOV MODEL OF CONVERGENCE OPPORTUNITYsimple markov model of convergence opportunity

S0 S1

hit ≤ ∆

∆

hit, hit ≤ ∆

hit +∆

Complete model

26



SIMPLE MARKOV MODEL OF CONVERGENCE OPPORTUNITYsimple markov model of convergence opportunity

S0 S1

hit ≤ ∆

∆

hit, hit ≤ ∆

hit +∆

Complete model

26

Convergence Opportunity! 



OUR PROGRAM

our program

1. Define a Markov model with states & events of interest
2. Compute stationary distribution for states and edges
3. Derive expectations for events of interest
4. Apply Concentration theorems

27

simple markov model of convergence opportunity

S0 S1

hit ≤ ∆

∆

hit, hit ≤ ∆

hit +∆

Complete model

Convergence Opportunities 



OUR PROGRAM

our program

1. Define a Markov model with states & events of interest
2. Compute stationary distribution for states and edges
3. Derive expectations for events of interest
4. Apply Concentration theorems

27

simple markov model of convergence opportunity

S0 S1

hit ≤ ∆

∆

hit, hit ≤ ∆

hit +∆

Complete model

our program

1. Define a Markov model with states & events of interest
2. Compute stationary distribution for states and edges
3. Derive expectations for events of interest
4. Apply Concentration theorems

Pr[e00] = Pr[e10] = 1 − P∆
Pr[e01] = Pr[e11] = P∆

π0 = Pr[S0] = (1 − P∆)π0 + (1 − P∆)π1

π1 = Pr[S1] = P∆π1 + P∆π0

2Q − L = 2(E01 + E11) − (E00 + E11 + 2E10)
= 2E01 + E11 − 2E10 − E00

P2
∆ − (1 − P∆)2∑
i,j Pr[eij]πilij

Pr[e00] = Pr[e10] = 1 − P∆
Pr[e01] = Pr[e11] = P∆

π0 = Pr[S0] = (1 − P∆)π0 + (1 − P∆)π1

π1 = Pr[S1] = P∆π1 + P∆π0

2Q − L = 2(E01 + E11) − (E00 + E11 + 2E10)
= 2E01 + E11 − 2E10 − E00

P2
∆ − (1 − P∆)2∑
i,j Pr[eij]πilij

CCS ’18, October 15–19, 2018, Toronto, ON, Canada Lucianna Ki�er, Rajmohan Rajaraman and abhi shelat

In the consistency analysis of Nakamoto, Pass, Seeman, and
shelat consider any window of T rounds and count special events,
called Convergence Opportunities, which are events after which all
honest players agree on a single chain; we de�ne them formally in
the following subsection. If an adversarywants to break consistency,
they must combat all convergence opportunities. To analyze what
an adversary can do in a given window of T rounds, we must also
argue that there are only a constant number of blocks the adversary
mined before the window, which the adversary can use in an attack
during the window. We now state our version of the consistency
theorem of [17] for any blockchain protocol which states that if
those two properties hold, then the protocol satis�es consistency.

T������ 4.3 (Blockchain Consistency). A blockchain proto-
col satis�es consistency if 9� 2 (0, 1) satisfying µ � �� such that
for any integer T and in any window of T rounds, with probability
1�� (T ) for a negligible function � (·), the number of convergence op-
portunitiesC is greater than the number of adversarial blocks needed
to break all convergence opportunities A, and the number of blocks
mined before T which the adversary can use in T to break conver-
gence opportunities is less than C �A.

Using the above theorem, Pass et al derive the following condi-
tion for Nakamoto’s protocol to achieve consistency, where � =
1 � (1 � p) (1�� )n and � = �np.

� (1 � (2� + 2)� ) � (1 + � )� .

4.2 Counting Convergence Opportunities
Using Markov Chains

We reconsider the analysis of convergence opportunities in [17]
using our Markov approach. A convergence opportunity is an event
after which all honest players agree on a single block as the lat-
est block and therefore agree on a single longest chain. The con-
vergence opportunity is made up of 3 sequences of rounds, each
characterized by the outcome of mining by the honest players.
• First, � rounds pass in which no honest player mines a block.
Thus, by the model, at the end of the � rounds, all honest
players know all honest blocks, and therefore agree on what
is the maximum length of the chain (though not necessarily
the same chain).
• Second, a single honest player mines, thus extending a chain
by one more block than the previous longest chain.
• Third, another � rounds pass in which no honest player
mines. Thus, at the end, all honest players know the new
block and therefore agree on the single longest chain.

To prove that a given protocol achieves consistency, the analysis
�rst argues that to prevent consensus, it is necessary for the ad-
versary to “break” all convergence opportunities. An adversary
can break a convergence opportunity by disrupting either of the
quiet periods of step one and three by announcing one of their
own blocks during that time. Thus, the analysis attempts to bound
both the number of convergence opportunities the honest players
have and the number of blocks the adversary must mine to break
those. To obtain this count, the analysis in [17] sums over all honest
blocks mined (hits) in any time interval and tracks whether the
“quiet” period between honest hits is less than �. In a given period
of L honest hits, let q denote the number of quiet periods between

S0 S1

hit  �
�

hit, hit  �

hit +�

Figure 2: A simple Markov model for counting convergence
opportunities

two honest hits that are less than � rounds, and let Q denote the
same for quiet periods longer than �.

To arrive at their consistency proof, the consistency lemma [17,
Lemma 6.11] derives a lower bound of 2Q � L on the number of
convergence opportunities. Speci�cally, they show that except with
probability 1�e��(�t ) , there are at least (1�� 000) (1� 2� (�+ 1))�t
convergence opportunities between any two rounds r and r + t ,
and moreover, an adversary only mined at most (1 +w 00) (t + 1)�
blocks, for arbitrary small constants � 000,w 00 � 0.

Using a simple Markov chain, we show below that the above
lower bound is not accurate; it may underestimate the true count
of convergence opportunities.

Figure 2 presents a Markov model which precisely captures the
count from Pass et al. It has 2 states: S0 represents a “messy” state
where honest mined blocks occur in less than � rounds from one
another, while S1 is the state where quiet periods between honest
mined blocks is at least � rounds. As long as quiet periods are
shorter than � rounds the system stays in S0; otherwise we move to
state S1. Once in S1, the system stays in S1 as long as quiet periods
between honest mined blocks are at least � rounds, otherwise the
state changes to S0. Let ei j represent the edge from state Si to state
Sj . Below are the events that happen when each edge is traversed:

e00 = one quiet period of less than � rounds followed by a
single honest mined block
e01 = one quiet period that is at least � rounds
e11 = a single honest mined block followed by a quiet period
of at least � rounds
e10 = an honest mined block followed by one quiet period
of less than � rounds followed by an honest mined block.

Consider a random walk on this Markov chain. We can compute
the number of honest mined blocks by counting one block every
time e00 or e11 is traversed, and 2 every time e10 is traversed. To
calculate Q , we count the number of times e01 is traversed plus the
number of times e11 is traversed. Letting Ei j represent the expected
number of times ei j is traversed, we have:

2Q � L = 2(E01 + E11) � (E00 + E11 + 2E10)
= 2E01 + E11 � 2E10 � E00

Our analysis plan is to compare the expected fraction of events
that are convergence opportunities with the expected fraction of
events that are blocks mined by the adversary, and then invoke
concentration bounds from Theorem 3.1. To calculate the expecta-
tions, we solve for the probability of crossing each edge, and the
stationary probabilities. Let P� = (1 � µp)� be the probability of �

6

Convergence Opportunities 



OUR PROGRAM

our program

1. Define a Markov model with states & events of interest
2. Compute stationary distribution for states and edges
3. Derive expectations for events of interest
4. Apply Concentration theorems

27

simple markov model of convergence opportunity

S0 S1

hit ≤ ∆

∆

hit, hit ≤ ∆

hit +∆

Complete model

our program

1. Define a Markov model with states & events of interest
2. Compute stationary distribution for states and edges
3. Derive expectations for events of interest
4. Apply Concentration theorems

Pr[e00] = Pr[e10] = 1 − P∆
Pr[e01] = Pr[e11] = P∆

π0 = Pr[S0] = (1 − P∆)π0 + (1 − P∆)π1

π1 = Pr[S1] = P∆π1 + P∆π0

2Q − L = 2(E01 + E11) − (E00 + E11 + 2E10)
= 2E01 + E11 − 2E10 − E00

P2
∆ − (1 − P∆)2∑
i,j Pr[eij]πilij

Pr[e00] = Pr[e10] = 1 − P∆
Pr[e01] = Pr[e11] = P∆

π0 = Pr[S0] = (1 − P∆)π0 + (1 − P∆)π1

π1 = Pr[S1] = P∆π1 + P∆π0

2Q − L = 2(E01 + E11) − (E00 + E11 + 2E10)
= 2E01 + E11 − 2E10 − E00

P2
∆ − (1 − P∆)2∑
i,j Pr[eij]πilij

CCS ’18, October 15–19, 2018, Toronto, ON, Canada Lucianna Ki�er, Rajmohan Rajaraman and abhi shelat

In the consistency analysis of Nakamoto, Pass, Seeman, and
shelat consider any window of T rounds and count special events,
called Convergence Opportunities, which are events after which all
honest players agree on a single chain; we de�ne them formally in
the following subsection. If an adversarywants to break consistency,
they must combat all convergence opportunities. To analyze what
an adversary can do in a given window of T rounds, we must also
argue that there are only a constant number of blocks the adversary
mined before the window, which the adversary can use in an attack
during the window. We now state our version of the consistency
theorem of [17] for any blockchain protocol which states that if
those two properties hold, then the protocol satis�es consistency.

T������ 4.3 (Blockchain Consistency). A blockchain proto-
col satis�es consistency if 9� 2 (0, 1) satisfying µ � �� such that
for any integer T and in any window of T rounds, with probability
1�� (T ) for a negligible function � (·), the number of convergence op-
portunitiesC is greater than the number of adversarial blocks needed
to break all convergence opportunities A, and the number of blocks
mined before T which the adversary can use in T to break conver-
gence opportunities is less than C �A.

Using the above theorem, Pass et al derive the following condi-
tion for Nakamoto’s protocol to achieve consistency, where � =
1 � (1 � p) (1�� )n and � = �np.

� (1 � (2� + 2)� ) � (1 + � )� .

4.2 Counting Convergence Opportunities
Using Markov Chains

We reconsider the analysis of convergence opportunities in [17]
using our Markov approach. A convergence opportunity is an event
after which all honest players agree on a single block as the lat-
est block and therefore agree on a single longest chain. The con-
vergence opportunity is made up of 3 sequences of rounds, each
characterized by the outcome of mining by the honest players.
• First, � rounds pass in which no honest player mines a block.
Thus, by the model, at the end of the � rounds, all honest
players know all honest blocks, and therefore agree on what
is the maximum length of the chain (though not necessarily
the same chain).
• Second, a single honest player mines, thus extending a chain
by one more block than the previous longest chain.
• Third, another � rounds pass in which no honest player
mines. Thus, at the end, all honest players know the new
block and therefore agree on the single longest chain.

To prove that a given protocol achieves consistency, the analysis
�rst argues that to prevent consensus, it is necessary for the ad-
versary to “break” all convergence opportunities. An adversary
can break a convergence opportunity by disrupting either of the
quiet periods of step one and three by announcing one of their
own blocks during that time. Thus, the analysis attempts to bound
both the number of convergence opportunities the honest players
have and the number of blocks the adversary must mine to break
those. To obtain this count, the analysis in [17] sums over all honest
blocks mined (hits) in any time interval and tracks whether the
“quiet” period between honest hits is less than �. In a given period
of L honest hits, let q denote the number of quiet periods between

S0 S1

hit  �
�

hit, hit  �

hit +�

Figure 2: A simple Markov model for counting convergence
opportunities

two honest hits that are less than � rounds, and let Q denote the
same for quiet periods longer than �.

To arrive at their consistency proof, the consistency lemma [17,
Lemma 6.11] derives a lower bound of 2Q � L on the number of
convergence opportunities. Speci�cally, they show that except with
probability 1�e��(�t ) , there are at least (1�� 000) (1� 2� (�+ 1))�t
convergence opportunities between any two rounds r and r + t ,
and moreover, an adversary only mined at most (1 +w 00) (t + 1)�
blocks, for arbitrary small constants � 000,w 00 � 0.

Using a simple Markov chain, we show below that the above
lower bound is not accurate; it may underestimate the true count
of convergence opportunities.

Figure 2 presents a Markov model which precisely captures the
count from Pass et al. It has 2 states: S0 represents a “messy” state
where honest mined blocks occur in less than � rounds from one
another, while S1 is the state where quiet periods between honest
mined blocks is at least � rounds. As long as quiet periods are
shorter than � rounds the system stays in S0; otherwise we move to
state S1. Once in S1, the system stays in S1 as long as quiet periods
between honest mined blocks are at least � rounds, otherwise the
state changes to S0. Let ei j represent the edge from state Si to state
Sj . Below are the events that happen when each edge is traversed:

e00 = one quiet period of less than � rounds followed by a
single honest mined block
e01 = one quiet period that is at least � rounds
e11 = a single honest mined block followed by a quiet period
of at least � rounds
e10 = an honest mined block followed by one quiet period
of less than � rounds followed by an honest mined block.

Consider a random walk on this Markov chain. We can compute
the number of honest mined blocks by counting one block every
time e00 or e11 is traversed, and 2 every time e10 is traversed. To
calculate Q , we count the number of times e01 is traversed plus the
number of times e11 is traversed. Letting Ei j represent the expected
number of times ei j is traversed, we have:

2Q � L = 2(E01 + E11) � (E00 + E11 + 2E10)
= 2E01 + E11 � 2E10 � E00

Our analysis plan is to compare the expected fraction of events
that are convergence opportunities with the expected fraction of
events that are blocks mined by the adversary, and then invoke
concentration bounds from Theorem 3.1. To calculate the expecta-
tions, we solve for the probability of crossing each edge, and the
stationary probabilities. Let P� = (1 � µp)� be the probability of �

6

our program

1. Define a Markov model with states & events of interest
2. Compute stationary distribution for states and edges
3. Derive expectations for events of interest
4. Apply Concentration theorems

Convergence Opportunities 

Expected number of C.O.s in T rounds is T � P 2
��

i,j Pr[eij ]�ij lij



OUR PROGRAM

our program

1. Define a Markov model with states & events of interest
2. Compute stationary distribution for states and edges
3. Derive expectations for events of interest
4. Apply Concentration theorems

27

simple markov model of convergence opportunity

S0 S1

hit ≤ ∆

∆

hit, hit ≤ ∆

hit +∆

Complete model

our program

1. Define a Markov model with states & events of interest
2. Compute stationary distribution for states and edges
3. Derive expectations for events of interest
4. Apply Concentration theorems

Pr[e00] = Pr[e10] = 1 − P∆
Pr[e01] = Pr[e11] = P∆

π0 = Pr[S0] = (1 − P∆)π0 + (1 − P∆)π1

π1 = Pr[S1] = P∆π1 + P∆π0

2Q − L = 2(E01 + E11) − (E00 + E11 + 2E10)
= 2E01 + E11 − 2E10 − E00

P2
∆ − (1 − P∆)2∑
i,j Pr[eij]πilij

Pr[e00] = Pr[e10] = 1 − P∆
Pr[e01] = Pr[e11] = P∆

π0 = Pr[S0] = (1 − P∆)π0 + (1 − P∆)π1

π1 = Pr[S1] = P∆π1 + P∆π0

2Q − L = 2(E01 + E11) − (E00 + E11 + 2E10)
= 2E01 + E11 − 2E10 − E00

P2
∆ − (1 − P∆)2∑
i,j Pr[eij]πilij

CCS ’18, October 15–19, 2018, Toronto, ON, Canada Lucianna Ki�er, Rajmohan Rajaraman and abhi shelat

In the consistency analysis of Nakamoto, Pass, Seeman, and
shelat consider any window of T rounds and count special events,
called Convergence Opportunities, which are events after which all
honest players agree on a single chain; we de�ne them formally in
the following subsection. If an adversarywants to break consistency,
they must combat all convergence opportunities. To analyze what
an adversary can do in a given window of T rounds, we must also
argue that there are only a constant number of blocks the adversary
mined before the window, which the adversary can use in an attack
during the window. We now state our version of the consistency
theorem of [17] for any blockchain protocol which states that if
those two properties hold, then the protocol satis�es consistency.

T������ 4.3 (Blockchain Consistency). A blockchain proto-
col satis�es consistency if 9� 2 (0, 1) satisfying µ � �� such that
for any integer T and in any window of T rounds, with probability
1�� (T ) for a negligible function � (·), the number of convergence op-
portunitiesC is greater than the number of adversarial blocks needed
to break all convergence opportunities A, and the number of blocks
mined before T which the adversary can use in T to break conver-
gence opportunities is less than C �A.

Using the above theorem, Pass et al derive the following condi-
tion for Nakamoto’s protocol to achieve consistency, where � =
1 � (1 � p) (1�� )n and � = �np.

� (1 � (2� + 2)� ) � (1 + � )� .

4.2 Counting Convergence Opportunities
Using Markov Chains

We reconsider the analysis of convergence opportunities in [17]
using our Markov approach. A convergence opportunity is an event
after which all honest players agree on a single block as the lat-
est block and therefore agree on a single longest chain. The con-
vergence opportunity is made up of 3 sequences of rounds, each
characterized by the outcome of mining by the honest players.
• First, � rounds pass in which no honest player mines a block.
Thus, by the model, at the end of the � rounds, all honest
players know all honest blocks, and therefore agree on what
is the maximum length of the chain (though not necessarily
the same chain).
• Second, a single honest player mines, thus extending a chain
by one more block than the previous longest chain.
• Third, another � rounds pass in which no honest player
mines. Thus, at the end, all honest players know the new
block and therefore agree on the single longest chain.

To prove that a given protocol achieves consistency, the analysis
�rst argues that to prevent consensus, it is necessary for the ad-
versary to “break” all convergence opportunities. An adversary
can break a convergence opportunity by disrupting either of the
quiet periods of step one and three by announcing one of their
own blocks during that time. Thus, the analysis attempts to bound
both the number of convergence opportunities the honest players
have and the number of blocks the adversary must mine to break
those. To obtain this count, the analysis in [17] sums over all honest
blocks mined (hits) in any time interval and tracks whether the
“quiet” period between honest hits is less than �. In a given period
of L honest hits, let q denote the number of quiet periods between

S0 S1

hit  �
�

hit, hit  �

hit +�

Figure 2: A simple Markov model for counting convergence
opportunities

two honest hits that are less than � rounds, and let Q denote the
same for quiet periods longer than �.

To arrive at their consistency proof, the consistency lemma [17,
Lemma 6.11] derives a lower bound of 2Q � L on the number of
convergence opportunities. Speci�cally, they show that except with
probability 1�e��(�t ) , there are at least (1�� 000) (1� 2� (�+ 1))�t
convergence opportunities between any two rounds r and r + t ,
and moreover, an adversary only mined at most (1 +w 00) (t + 1)�
blocks, for arbitrary small constants � 000,w 00 � 0.

Using a simple Markov chain, we show below that the above
lower bound is not accurate; it may underestimate the true count
of convergence opportunities.

Figure 2 presents a Markov model which precisely captures the
count from Pass et al. It has 2 states: S0 represents a “messy” state
where honest mined blocks occur in less than � rounds from one
another, while S1 is the state where quiet periods between honest
mined blocks is at least � rounds. As long as quiet periods are
shorter than � rounds the system stays in S0; otherwise we move to
state S1. Once in S1, the system stays in S1 as long as quiet periods
between honest mined blocks are at least � rounds, otherwise the
state changes to S0. Let ei j represent the edge from state Si to state
Sj . Below are the events that happen when each edge is traversed:

e00 = one quiet period of less than � rounds followed by a
single honest mined block
e01 = one quiet period that is at least � rounds
e11 = a single honest mined block followed by a quiet period
of at least � rounds
e10 = an honest mined block followed by one quiet period
of less than � rounds followed by an honest mined block.

Consider a random walk on this Markov chain. We can compute
the number of honest mined blocks by counting one block every
time e00 or e11 is traversed, and 2 every time e10 is traversed. To
calculate Q , we count the number of times e01 is traversed plus the
number of times e11 is traversed. Letting Ei j represent the expected
number of times ei j is traversed, we have:

2Q � L = 2(E01 + E11) � (E00 + E11 + 2E10)
= 2E01 + E11 � 2E10 � E00

Our analysis plan is to compare the expected fraction of events
that are convergence opportunities with the expected fraction of
events that are blocks mined by the adversary, and then invoke
concentration bounds from Theorem 3.1. To calculate the expecta-
tions, we solve for the probability of crossing each edge, and the
stationary probabilities. Let P� = (1 � µp)� be the probability of �

6

our program

1. Define a Markov model with states & events of interest
2. Compute stationary distribution for states and edges
3. Derive expectations for events of interest
4. Apply Concentration theorems

Convergence Opportunities 

our program

1. Define a Markov model with states & events of interest
2. Compute stationary distribution for states and edges
3. Derive expectations for events of interest
4. Apply Concentration theorems

‣  

Expected number of C.O.s in T rounds is T � P 2
��

i,j Pr[eij ]�ij lij

Number of C.O.s is concentrated around the expectation



Theorem (Our Nakamoto Consistency)

Nakamoto’s protocol satisfies consistency if there exists δ > 0 such
that

(P1,2π1 + P3,2π3)∑
i,j
Pi,jπili,j

≥ (1 + δ)β

28

P 2
��

i,j Pr[ei,j ]�i,j li,j

Theorem (Our Nakamoto Consistency)

Nakamoto’s protocol satisfies consistency if there exists δ > 0 such
that

(P1,2π1 + P3,2π3)∑
i,j
Pi,jπili,j

≥ (1 + δ)β
� = Pr[adversary mines a block ]



Theorem (Our Nakamoto Consistency)

Nakamoto’s protocol satisfies consistency if there exists δ > 0 such
that

(P1,2π1 + P3,2π3)∑
i,j
Pi,jπili,j

≥ (1 + δ)β

Fraction of events that 
are convergence opportunities 

28

P 2
��

i,j Pr[ei,j ]�i,j li,j

Theorem (Our Nakamoto Consistency)

Nakamoto’s protocol satisfies consistency if there exists δ > 0 such
that

(P1,2π1 + P3,2π3)∑
i,j
Pi,jπili,j

≥ (1 + δ)β
� = Pr[adversary mines a block ]



Theorem (Our Nakamoto Consistency)

Nakamoto’s protocol satisfies consistency if there exists δ > 0 such
that

(P1,2π1 + P3,2π3)∑
i,j
Pi,jπili,j

≥ (1 + δ)β

Fraction of events that 
are convergence opportunities 

28

P 2
��

i,j Pr[ei,j ]�i,j li,j

Fraction of events that 
are adversarial mined blocks

Theorem (Our Nakamoto Consistency)

Nakamoto’s protocol satisfies consistency if there exists δ > 0 such
that

(P1,2π1 + P3,2π3)∑
i,j
Pi,jπili,j

≥ (1 + δ)β
� = Pr[adversary mines a block ]



Theorem (Our Nakamoto Consistency)

Nakamoto’s protocol satisfies consistency if there exists δ > 0 such
that

(P1,2π1 + P3,2π3)∑
i,j
Pi,jπili,j

≥ (1 + δ)β

Number of blocks  
adversary needs

Number of blocks  
adversary can mine

28

P 2
��

i,j Pr[ei,j ]�i,j li,j

Theorem (Our Nakamoto Consistency)

Nakamoto’s protocol satisfies consistency if there exists δ > 0 such
that

(P1,2π1 + P3,2π3)∑
i,j
Pi,jπili,j

≥ (1 + δ)βIn T rounds, with probability � 1 � �1(k) � �2(T )

T� �T



Roadmap

1. How to analyze consistency

2. Our analysis on Nakamoto consistency

3. An attack on Nakamoto consistency

4. Cliquechain consistency and attack

5. GHOST consistency and attack

15



Nakamoto Delay Attack

Anonymous submission #586 to ACM CCS 2018

L���� 5.1 (Cliquechain Chain Growth). For any � > 0, the
growth of themain chain of any honest player in anm-chain Cliquechain
protocol inT rounds is at leastT (1�� ) µ

�(c+µ ) , except with probabil-
ity that drops exponentially in T .

L���� 5.2 (Cliquechain Block Expiry). There exists a � 2
(0, 1) such that if µ � ��, then every adversarial block expires.

5.3 Convergence Opportunities
Recall that “convergence opportunities” are events at the end of
which all honest players agree on a single chain. A convergence
opportunity has 3 parts: � rounds where no honest player mines a
block, a single honest block mined (termed a ‘hit’), then another �
rounds where no honest player mines a block. After a convergence
opportunity in Cliquechain, all honest players agree that the con-
vergence opportunity block is in the longest Cliquechain, and any
blocks they now mine on must be consistent with this block.

L���� 5.3. At the end of a convergence opportunity (� silence +
single honest hit +� silence), all honest players in Cliquechain start
working on blocks consistent with the honest hit block.

For a proof sketch of this lemma refer to Appendix D. From
the above we get that any convergence opportunity in Nakamoto
is also a convergence opportunity in Cliquechain. Thus we can
use the convergence opportunity count we derived in §4.3. We
have already shown that block expiry in Cliquechain is satis�ed
under the same conditions as Nakamoto. Thus, we can extend the
consistency theorem of Nakamoto’s protocol to Cliquechain.

C�������� 5.4. Cliquechain satis�es consistency under the same
conditions as stated in Theorem 4.4.

5.4 Cliquechain Consensus Attacks
We evaluate how Cliquechain preforms under a version of the
delay attack of [16]. This attack works on Cliquechain similarly to
how it works on Nakamoto’s protocol. The goal of the adversary
is to delay all honest messages the maximum amount which is
�. The adversary’s strategy is to maximize wasted honest work
by having honest miners work on blocks they don’t know have
already been mined, therefore delaying the growth of the honest
chain(s) while the adversary mines e�ciently on their own secret
chain. With Cliquechain, this attack is thwarted by the fact that the
honest players split their mining power among all chains, so if a
block is mined and delayed on one chain, the honest miners on the
remaining chains that don’t yet have a block on that level, are not
wasting work during that � delay.

To evaluate these attacks we construct Markov models which
represent all possible scenarios of how honest blocks are mined
in a layer of Cliquechain. Crucial to this analysis is the fact that
in Cliquechain no blocks in a new layer can be mined until the
previous full layer is mined. Thus all variations of how a layer is
mined can restart once the full layer has been mined. Figure 8 shows
our Markov models for the 1,2 and 3-chain Cliquechain protocols,
with 1-chain being just the Nakamoto delay attack.

For all models, state S0 represents the state where miners are
mining a fresh new layer, and Si is the state where i chains have a

A0 A1 A2

A0 A1 A2

B0 B1 B2

A0 A1 A2

B0 B1 B2

C0 C1 C2

Figure 7: 1, 2, and 3-chain Cliquechain examples where the
solid line represents a block pointing to a parent block in its
chain, and a dotted line represents a block cross-referencing
another chain. Notice 1-chain is simply Nakamoto’s proto-
col. In anm-chain Cliquechain protocol each block at layer
` points directly their parent (the ` � 1 block of their chain)
plus references to a block in eachm � 1 of the other chains.

1-chain

S0

hit +�

2-chain

S0 S1
Hit

�+Hit + �

hit � +�

3-chain

S0 S1 S2
Hit �+ Hit

Hit  �, +�

�+ Hit +�

C
B

A

Figure 8: Markov chain models capturing the delay attack
on 1, 2 and 3-chain Cliquechain protocols.

block at that layer. We say an attack succeeds if the expected time
for the honest players to mine a block in this model is more than
the expected time for an adversary to mine a block e�ciently. The
expected time for an honest player to mine a block is the expected
time to leave state S0 and get back to state S0 divided by the number
of chains (i.e. how many blocks were added to the honest full braid).

The 1-chain analysis is just the Nakamoto analysis, we analyze
the 2-chain and 3-chain attack in to Appendix E. Figure 9 shows the

10

Attack: 


• delay receipt of all honest blocks by 


• adversary mines secret chain efficiently 


Goal: Thwart the rate of growth of the honest chain so 
adversary’s secret chain is longer


30



Nakamoto Delay Attack

Attack: 


• delay receipt of all honest blocks by 


• adversary mines secret chain efficiently 


Goal: Thwart the rate of growth of the honest chain so 
adversary’s secret chain is longer


30



29

main parameters

∆ the network delay bound

p = 1
c·n∆ the mining hardness is expressed in terms of param-

eter c, roughly the expected number of network de-
lays before some block is mined

ρ the adversarial fraction of parties

µ = 1 − ρ the fraction of honest parties

Recall mining hardness is 

1 2 4 10 25 60 100
0

1
10

3
10

1
2

c (blocktime in terms of network delay ∆)

ρ
(A
dv

er
sa
ry

fra
ct
io
n)

Consistency from [PSS17]
Delay attack from [PSS17]
First Markov Model
Our Consistency Thm

Anonymous submission #586 to ACM CCS 2018

1 2 4 10 25 60 100
0

1
10

3
10

1
2

c (blocktime in terms of network delay �)

�
(A
dv
er
sa
ry

fr
ac
tio

n)

Delay attack from [16]
Consistency from [16]
Our First Markov Model
Our Consistency Thm

Figure 1: Replication of [16, Fig. 1], “Minimumpercentage of
computing power an adversary must hold in order to break
consistency" using same parameters n = 105 and � = 1013,
p = 1

c� , but illustrating the new bound from our Thm. 4.4.

In subsequent work in 2017, Garay, Kiayas and Leonardos [8]
studied aspects of how the hardness p is adjusted as more players
join the protocol during epochs in the Nakamoto consensus protocol
and how this epoch must be su�ciently large to avoid certain
attacks. Techniques from this paper were also used to update [7];
in particular, the updated version of the latter extends the analysis
to the partially synchronous model but is not precise enough to
make concrete claims about the parameters.

1.1 Contributions
In this paper we show how Markov chains can be used to model
blockchain protocols to both simplify the analysis of blockchain
protocols and attacks and to make precise claims about parameter
relationships. To introduce our method, in §4.2 we show how to
replicate the analysis of Nakamoto’s protocol done by Pass et al. [16]
using a Markov model. We validate our method by recovering
essentially the same bound.

By inspecting this graphical Markov model, however, we discov-
ered cases in which the counting of events in [16] either over- or
under-counts a special event. Based on this insight, we propose a
new Markov model in §4.3 that exactly counts so called “conver-
gence opportunities” and thus leads to more accurate bounds on
consistency (see Thm 4.4). To illustrate this new result, Fig. 1 repli-
cates a graph from [16] showing a relationship between proof of
work hardness and adversary control. Against the original analysis
( ) and attack ( ), our new result from the Markov model
( ) shows higher resilience at lower parameters, and slightly
less resilience at higher parameters.

To further illustrate our technique, in §5we introduce Cliquechain,
a speci�c example of the Chainweb protocol [14] for which we can
use our techniques to show the same consistency lower-bound
as Nakamoto’s protocol. Chainweb proposes a blockchain proto-
col that creates a braid of various parallel chains. The main idea
is that at each level the chains reference each other according to
some base graph, and thus in order to replace one block in any

chain, you must also replace the blocks in the parallel chains that
reference it. The protocol claims to be able to handle 10K trans-
actions per second over hundreds or thousands of parallel chains,
but the analysis in the paper again only considers variations of the
50% attack. Our analysis on consistency does not support this 10k
claim. [Add in sentence supporting this last claim: bitcoin
can handle max 7 txns/sec, and CliqueChain provably can
only handle the same block rate as Nakamoto for the same
security lowerbound, so regardless of how many chain we
have with CliqueChain, either the blocks have to be bigger
(so � increases) or the individual block rate needs to increase
(so c is lower) in order to support more txns/sec. Either way
the security threshold is lowered]

In §6, we extend our techniques to establish that the protocol
GHOST [19] also has the same consistency lower bounds. GHOST’s
main claim is also that it can handle higher transaction rates than
Nakamoto’s protocol while being resilient to 50% attacks.

For each protocol we also analyze variants of attacks using our
technique and provide probability distributions for how long the
attacks last. In §4.4 we �rst show a very simple Markov model
that captures the ‘50% attack’ on Nakamoto presented in [16]. As
discussed so far, the notion of blockchain consistency considered in
the literature is still an asymptotic notion that requires the “proba-
bility of a fork” to fall exponentially with some parameter T . We
use this same attack model to answer very pragmatic questions
about blockchains: For example “how long should one wait before
con�rming a transaction?” While folklore holds that one should ig-
nore (i.e., wait for) the last T = 6 blocks, we provide a more precise
answer to this question by modeling an attack in which the goal
of the adversary is to “undo” a recently con�rmed transaction. We
show, for example, thatT = 6 is a surprisingly low default for chains
like Ethereum which use more aggressive network parameters.

Since this delay attack is not successful on GHOST, we present
another attack, the ‘Balancing Attack’, with a Markov chain in §6.4
which captures a simpli�ed version of the attack on GHOST.We use
this model to capture a lower bound on transaction con�rmation
time for the GHOST protocol in Fig. 13

Our work is not the �rst to employ Markov-based analysis of
blockchains. Indeed, Eyal and Sirer [6] develop a Markov model to
analyze the success of the sel�sh mining attack on Nakamoto’s pro-
tocol. Our work, however, is the �rst to use Markov-based models
to analyze consistency against any adversary, and provides a gen-
eral framework to analyze speci�c attacks on various blockchain
protocols. Previous studies on consistency [7, 8, 16] have advocated
using Markov methods, but have considered them too complicated
to analyze: for instance, the authors of [16] write “the Markov chain
that arises from this problem is too complicated to analyze using
standard concentration bounds for Markov chains.” We show that
consistency of several blockchain protocols as well as the impact
of speci�c attacks are well-captured by natural Markov chains, and
can be analyzed using a judicious combination of (a) derivation of
steady-state distributions; (b) concentration bounds for generalized
Markov chains; (c) generating functions for deriving probability
of signi�cant events; and (d) simpli�cation of the Markov chain,
where appropriate. Even in cases, where we are unable to derive

2

Anonymous submission #586 to ACM CCS 2018

1 2 4 10 25 60 100
0

1
10

3
10

1
2

c (blocktime in terms of network delay �)

�
(A
dv
er
sa
ry

fr
ac
tio

n)

Delay attack from [16]
Consistency from [16]

Figure 1: Replication of [16, Fig. 1], “Minimumpercentage of
computing power an adversary must hold in order to break
consistency" using same parameters n = 105 and � = 1013,
p = 1

c� , but illustrating the new bound from our Thm. 4.4.

In subsequent work in 2017, Garay, Kiayas and Leonardos [8]
studied aspects of how the hardness p is adjusted as more players
join the protocol during epochs in the Nakamoto consensus protocol
and how this epoch must be su�ciently large to avoid certain
attacks. Techniques from this paper were also used to update [7];
in particular, the updated version of the latter extends the analysis
to the partially synchronous model but is not precise enough to
make concrete claims about the parameters.

1.1 Contributions
In this paper we show how Markov chains can be used to model
blockchain protocols to both simplify the analysis of blockchain
protocols and attacks and to make precise claims about parameter
relationships. To introduce our method, in §4.2 we show how to
replicate the analysis of Nakamoto’s protocol done by Pass et al. [16]
using a Markov model. We validate our method by recovering
essentially the same bound.

By inspecting this graphical Markov model, however, we discov-
ered cases in which the counting of events in [16] either over- or
under-counts a special event. Based on this insight, we propose a
new Markov model in §4.3 that exactly counts so called “conver-
gence opportunities” and thus leads to more accurate bounds on
consistency (see Thm 4.4). To illustrate this new result, Fig. 1 repli-
cates a graph from [16] showing a relationship between proof of
work hardness and adversary control. Against the original analysis
( ) and attack ( ), our new result from the Markov model
(??) shows higher resilience at lower parameters, and slightly less
resilience at higher parameters.

To further illustrate our technique, in §5we introduce Cliquechain,
a speci�c example of the Chainweb protocol [14] for which we can
use our techniques to show the same consistency lower-bound
as Nakamoto’s protocol. Chainweb proposes a blockchain proto-
col that creates a braid of various parallel chains. The main idea
is that at each level the chains reference each other according to
some base graph, and thus in order to replace one block in any

chain, you must also replace the blocks in the parallel chains that
reference it. The protocol claims to be able to handle 10K trans-
actions per second over hundreds or thousands of parallel chains,
but the analysis in the paper again only considers variations of the
50% attack. Our analysis on consistency does not support this 10k
claim. [Add in sentence supporting this last claim: bitcoin
can handle max 7 txns/sec, and CliqueChain provably can
only handle the same block rate as Nakamoto for the same
security lowerbound, so regardless of how many chain we
have with CliqueChain, either the blocks have to be bigger
(so � increases) or the individual block rate needs to increase
(so c is lower) in order to support more txns/sec. Either way
the security threshold is lowered]

In §6, we extend our techniques to establish that the protocol
GHOST [19] also has the same consistency lower bounds. GHOST’s
main claim is also that it can handle higher transaction rates than
Nakamoto’s protocol while being resilient to 50% attacks.

For each protocol we also analyze variants of attacks using our
technique and provide probability distributions for how long the
attacks last. In §4.4 we �rst show a very simple Markov model
that captures the ‘50% attack’ on Nakamoto presented in [16]. As
discussed so far, the notion of blockchain consistency considered in
the literature is still an asymptotic notion that requires the “proba-
bility of a fork” to fall exponentially with some parameter T . We
use this same attack model to answer very pragmatic questions
about blockchains: For example “how long should one wait before
con�rming a transaction?” While folklore holds that one should ig-
nore (i.e., wait for) the last T = 6 blocks, we provide a more precise
answer to this question by modeling an attack in which the goal
of the adversary is to “undo” a recently con�rmed transaction. We
show, for example, thatT = 6 is a surprisingly low default for chains
like Ethereum which use more aggressive network parameters.

Since this delay attack is not successful on GHOST, we present
another attack, the ‘Balancing Attack’, with a Markov chain in §6.4
which captures a simpli�ed version of the attack on GHOST.We use
this model to capture a lower bound on transaction con�rmation
time for the GHOST protocol in Fig. 13

Our work is not the �rst to employ Markov-based analysis of
blockchains. Indeed, Eyal and Sirer [6] develop a Markov model to
analyze the success of the sel�sh mining attack on Nakamoto’s pro-
tocol. Our work, however, is the �rst to use Markov-based models
to analyze consistency against any adversary, and provides a gen-
eral framework to analyze speci�c attacks on various blockchain
protocols. Previous studies on consistency [7, 8, 16] have advocated
using Markov methods, but have considered them too complicated
to analyze: for instance, the authors of [16] write “the Markov chain
that arises from this problem is too complicated to analyze using
standard concentration bounds for Markov chains.” We show that
consistency of several blockchain protocols as well as the impact
of speci�c attacks are well-captured by natural Markov chains, and
can be analyzed using a judicious combination of (a) derivation of
steady-state distributions; (b) concentration bounds for generalized
Markov chains; (c) generating functions for deriving probability
of signi�cant events; and (d) simpli�cation of the Markov chain,
where appropriate. Even in cases, where we are unable to derive

2

Anonymous submission #586 to ACM CCS 2018

1 2 4 10 25 60 100
0

1
10

3
10

1
2

c (blocktime in terms of network delay �)

�
(A
dv
er
sa
ry

fr
ac
tio

n)

Delay attack from [16]
Consistency from [16]
Our First Markov Model

Figure 1: Replication of [16, Fig. 1], “Minimumpercentage of
computing power an adversary must hold in order to break
consistency" using same parameters n = 105 and � = 1013,
p = 1

c� , but illustrating the new bound from our Thm. 4.4.

In subsequent work in 2017, Garay, Kiayas and Leonardos [8]
studied aspects of how the hardness p is adjusted as more players
join the protocol during epochs in the Nakamoto consensus protocol
and how this epoch must be su�ciently large to avoid certain
attacks. Techniques from this paper were also used to update [7];
in particular, the updated version of the latter extends the analysis
to the partially synchronous model but is not precise enough to
make concrete claims about the parameters.

1.1 Contributions
In this paper we show how Markov chains can be used to model
blockchain protocols to both simplify the analysis of blockchain
protocols and attacks and to make precise claims about parameter
relationships. To introduce our method, in §4.2 we show how to
replicate the analysis of Nakamoto’s protocol done by Pass et al. [16]
using a Markov model. We validate our method by recovering
essentially the same bound.

By inspecting this graphical Markov model, however, we discov-
ered cases in which the counting of events in [16] either over- or
under-counts a special event. Based on this insight, we propose a
new Markov model in §4.3 that exactly counts so called “conver-
gence opportunities” and thus leads to more accurate bounds on
consistency (see Thm 4.4). To illustrate this new result, Fig. 1 repli-
cates a graph from [16] showing a relationship between proof of
work hardness and adversary control. Against the original analysis
( ) and attack ( ), our new result from the Markov model
( ) shows higher resilience at lower parameters, and slightly
less resilience at higher parameters.

To further illustrate our technique, in §5we introduce Cliquechain,
a speci�c example of the Chainweb protocol [14] for which we can
use our techniques to show the same consistency lower-bound
as Nakamoto’s protocol. Chainweb proposes a blockchain proto-
col that creates a braid of various parallel chains. The main idea
is that at each level the chains reference each other according to
some base graph, and thus in order to replace one block in any

chain, you must also replace the blocks in the parallel chains that
reference it. The protocol claims to be able to handle 10K trans-
actions per second over hundreds or thousands of parallel chains,
but the analysis in the paper again only considers variations of the
50% attack. Our analysis on consistency does not support this 10k
claim. [Add in sentence supporting this last claim: bitcoin
can handle max 7 txns/sec, and CliqueChain provably can
only handle the same block rate as Nakamoto for the same
security lowerbound, so regardless of how many chain we
have with CliqueChain, either the blocks have to be bigger
(so � increases) or the individual block rate needs to increase
(so c is lower) in order to support more txns/sec. Either way
the security threshold is lowered]

In §6, we extend our techniques to establish that the protocol
GHOST [19] also has the same consistency lower bounds. GHOST’s
main claim is also that it can handle higher transaction rates than
Nakamoto’s protocol while being resilient to 50% attacks.

For each protocol we also analyze variants of attacks using our
technique and provide probability distributions for how long the
attacks last. In §4.4 we �rst show a very simple Markov model
that captures the ‘50% attack’ on Nakamoto presented in [16]. As
discussed so far, the notion of blockchain consistency considered in
the literature is still an asymptotic notion that requires the “proba-
bility of a fork” to fall exponentially with some parameter T . We
use this same attack model to answer very pragmatic questions
about blockchains: For example “how long should one wait before
con�rming a transaction?” While folklore holds that one should ig-
nore (i.e., wait for) the last T = 6 blocks, we provide a more precise
answer to this question by modeling an attack in which the goal
of the adversary is to “undo” a recently con�rmed transaction. We
show, for example, thatT = 6 is a surprisingly low default for chains
like Ethereum which use more aggressive network parameters.

Since this delay attack is not successful on GHOST, we present
another attack, the ‘Balancing Attack’, with a Markov chain in §6.4
which captures a simpli�ed version of the attack on GHOST.We use
this model to capture a lower bound on transaction con�rmation
time for the GHOST protocol in Fig. 13

Our work is not the �rst to employ Markov-based analysis of
blockchains. Indeed, Eyal and Sirer [6] develop a Markov model to
analyze the success of the sel�sh mining attack on Nakamoto’s pro-
tocol. Our work, however, is the �rst to use Markov-based models
to analyze consistency against any adversary, and provides a gen-
eral framework to analyze speci�c attacks on various blockchain
protocols. Previous studies on consistency [7, 8, 16] have advocated
using Markov methods, but have considered them too complicated
to analyze: for instance, the authors of [16] write “the Markov chain
that arises from this problem is too complicated to analyze using
standard concentration bounds for Markov chains.” We show that
consistency of several blockchain protocols as well as the impact
of speci�c attacks are well-captured by natural Markov chains, and
can be analyzed using a judicious combination of (a) derivation of
steady-state distributions; (b) concentration bounds for generalized
Markov chains; (c) generating functions for deriving probability
of signi�cant events; and (d) simpli�cation of the Markov chain,
where appropriate. Even in cases, where we are unable to derive

2

[PSS16]

[PSS16]

Anonymous submission #586 to ACM CCS 2018

1 2 4 10 25 60 100
0

1
10

3
10

1
2

c (blocktime in terms of network delay �)

�
(A
dv
er
sa
ry

fr
ac
tio

n)

Delay attack from [16]
Consistency from [16]
Our First Markov Model
Our Consistency Thm

Figure 1: Replication of [16, Fig. 1], “Minimumpercentage of
computing power an adversary must hold in order to break
consistency" using same parameters n = 105 and � = 1013,
p = 1

c� , but illustrating the new bound from our Thm. 4.4.

In subsequent work in 2017, Garay, Kiayas and Leonardos [8]
studied aspects of how the hardness p is adjusted as more players
join the protocol during epochs in the Nakamoto consensus protocol
and how this epoch must be su�ciently large to avoid certain
attacks. Techniques from this paper were also used to update [7];
in particular, the updated version of the latter extends the analysis
to the partially synchronous model but is not precise enough to
make concrete claims about the parameters.

1.1 Contributions
In this paper we show how Markov chains can be used to model
blockchain protocols to both simplify the analysis of blockchain
protocols and attacks and to make precise claims about parameter
relationships. To introduce our method, in §4.2 we show how to
replicate the analysis of Nakamoto’s protocol done by Pass et al. [16]
using a Markov model. We validate our method by recovering
essentially the same bound.

By inspecting this graphical Markov model, however, we discov-
ered cases in which the counting of events in [16] either over- or
under-counts a special event. Based on this insight, we propose a
new Markov model in §4.3 that exactly counts so called “conver-
gence opportunities” and thus leads to more accurate bounds on
consistency (see Thm 4.4). To illustrate this new result, Fig. 1 repli-
cates a graph from [16] showing a relationship between proof of
work hardness and adversary control. Against the original analysis
( ) and attack ( ), our new result from the Markov model
( ) shows higher resilience at lower parameters, and slightly
less resilience at higher parameters.

To further illustrate our technique, in §5we introduce Cliquechain,
a speci�c example of the Chainweb protocol [14] for which we can
use our techniques to show the same consistency lower-bound
as Nakamoto’s protocol. Chainweb proposes a blockchain proto-
col that creates a braid of various parallel chains. The main idea
is that at each level the chains reference each other according to
some base graph, and thus in order to replace one block in any

chain, you must also replace the blocks in the parallel chains that
reference it. The protocol claims to be able to handle 10K trans-
actions per second over hundreds or thousands of parallel chains,
but the analysis in the paper again only considers variations of the
50% attack. Our analysis on consistency does not support this 10k
claim. [Add in sentence supporting this last claim: bitcoin
can handle max 7 txns/sec, and CliqueChain provably can
only handle the same block rate as Nakamoto for the same
security lowerbound, so regardless of how many chain we
have with CliqueChain, either the blocks have to be bigger
(so � increases) or the individual block rate needs to increase
(so c is lower) in order to support more txns/sec. Either way
the security threshold is lowered]

In §6, we extend our techniques to establish that the protocol
GHOST [19] also has the same consistency lower bounds. GHOST’s
main claim is also that it can handle higher transaction rates than
Nakamoto’s protocol while being resilient to 50% attacks.

For each protocol we also analyze variants of attacks using our
technique and provide probability distributions for how long the
attacks last. In §4.4 we �rst show a very simple Markov model
that captures the ‘50% attack’ on Nakamoto presented in [16]. As
discussed so far, the notion of blockchain consistency considered in
the literature is still an asymptotic notion that requires the “proba-
bility of a fork” to fall exponentially with some parameter T . We
use this same attack model to answer very pragmatic questions
about blockchains: For example “how long should one wait before
con�rming a transaction?” While folklore holds that one should ig-
nore (i.e., wait for) the last T = 6 blocks, we provide a more precise
answer to this question by modeling an attack in which the goal
of the adversary is to “undo” a recently con�rmed transaction. We
show, for example, thatT = 6 is a surprisingly low default for chains
like Ethereum which use more aggressive network parameters.

Since this delay attack is not successful on GHOST, we present
another attack, the ‘Balancing Attack’, with a Markov chain in §6.4
which captures a simpli�ed version of the attack on GHOST.We use
this model to capture a lower bound on transaction con�rmation
time for the GHOST protocol in Fig. 13

Our work is not the �rst to employ Markov-based analysis of
blockchains. Indeed, Eyal and Sirer [6] develop a Markov model to
analyze the success of the sel�sh mining attack on Nakamoto’s pro-
tocol. Our work, however, is the �rst to use Markov-based models
to analyze consistency against any adversary, and provides a gen-
eral framework to analyze speci�c attacks on various blockchain
protocols. Previous studies on consistency [7, 8, 16] have advocated
using Markov methods, but have considered them too complicated
to analyze: for instance, the authors of [16] write “the Markov chain
that arises from this problem is too complicated to analyze using
standard concentration bounds for Markov chains.” We show that
consistency of several blockchain protocols as well as the impact
of speci�c attacks are well-captured by natural Markov chains, and
can be analyzed using a judicious combination of (a) derivation of
steady-state distributions; (b) concentration bounds for generalized
Markov chains; (c) generating functions for deriving probability
of signi�cant events; and (d) simpli�cation of the Markov chain,
where appropriate. Even in cases, where we are unable to derive

2

Our Result: An Improved Analysis



DELAY ATTACK ON NAKAMOTO 
HOW LONG TO WAIT

33





S0

S−1 Sx
a′′ ∆ + h

h

S1 S2 S3

h′ h′ h′ h′

a′a′ a′

a aaa

State S0 represents two chains of equal length

NAKAMOTO DELAY ATTACK

34



S0

S−1 Sx
a′′ ∆ + h

h

S1 S2 S3

h′ h′ h′ h′

a′a′ a′

a aaa

State S−1: honest chain ahead by one block.
Sx: attack has failed

S0

S−1 Sx
a′′ ∆ + h

h

S1 S2 S3

h′ h′ h′ h′

a′a′ a′

a aaa

P0(k): Prob of passing through k bad edges before state SX

NAKAMOTO DELAY ATTACK

34



S0

S−1 Sx
a′′ ∆ + h

h

S1 S2 S3

h′ h′ h′ h′

a′a′ a′

a aaa

State Si: adversary chain is ahead by i blocks

S0

S−1 Sx
a′′ ∆ + h

h

S1 S2 S3

h′ h′ h′ h′

a′a′ a′

a aaa

P0(k): Prob of passing through k bad edges before state SX

NAKAMOTO DELAY ATTACK

34



S0

S−1 Sx
a′′ ∆ + h

h

S1 S2 S3

h′ h′ h′ h′

a′a′ a′

a aaa

P0(k): Prob of passing through k bad edges before state SX

NAKAMOTO DELAY ATTACK

34



2 4 6 8 10 12 14 16 18
10−3

10−2

10−1

Length of fork ℓ

Pr
ob

ab
ili
ty

c=1
c=4
c= 60

Pr for Nakamoto to sustain a fork of length ℓ at 49% Adversary.

Now 33% adversary
Now 25% adversary

49% adversary

35



2 4 6 8 10 12 14 16 18
10−3

10−2

10−1

Length of fork ℓ

Pr
ob

ab
ili
ty

c=1
c=4
c= 60

Pr for Nakamoto to sustain a fork of length ℓ at 49% Adversary.
Now 33% adversary

Now 25% adversary

49% adversary

33% adversary33% adversary

35



2 4 6 8 10 12 14 16 18
10−3

10−2

10−1

Length of fork ℓ

Pr
ob

ab
ili
ty

c=1
c=4
c= 60

Pr for Nakamoto to sustain a fork of length ℓ at 49% Adversary.
Now 33% adversary
Now 25% adversary

49% adversary

33% adversary

25% adversary

35



2 4 6 8 10 12 14 16 18
10−3

10−2

10−1

Length of fork ℓ

Pr
ob

ab
ili
ty

c=1
c=4
c= 60

Pr for Nakamoto to sustain a fork of length ℓ at 49% Adversary.
Now 33% adversary
Now 25% adversary

49% adversary

33% adversary

25% adversary

35



Roadmap

1. How to analyze consistency

2. Our analysis on Nakamoto consistency

3. An attack on Nakamoto consistency

4. Cliquechain consistency and attack

5. GHOST consistency and attack

15



ANALYZING CLIQUECHAINanalyzing cliquechain

A0 A1 A2

37



ANALYZING CLIQUECHAINanalyzing cliquechain

A0 A1 A2

B0 B1 B2

C0 C1 C2

37



ANALYZING CLIQUECHAIN

Anonymous submission #586 to ACM CCS 2018

L���� 5.1 (Cliquechain Chain Growth). For any � > 0, the
growth of themain chain of any honest player in anm-chain Cliquechain
protocol inT rounds is at leastT (1�� ) µ

�(c+µ ) , except with probabil-
ity that drops exponentially in T .

L���� 5.2 (Cliquechain Block Expiry). There exists a � 2
(0, 1) such that if µ � ��, then every adversarial block expires.

5.3 Convergence Opportunities
Recall that “convergence opportunities” are events at the end of
which all honest players agree on a single chain. A convergence
opportunity has 3 parts: � rounds where no honest player mines a
block, a single honest block mined (termed a ‘hit’), then another �
rounds where no honest player mines a block. After a convergence
opportunity in Cliquechain, all honest players agree that the con-
vergence opportunity block is in the longest Cliquechain, and any
blocks they now mine on must be consistent with this block.

L���� 5.3. At the end of a convergence opportunity (� silence +
single honest hit +� silence), all honest players in Cliquechain start
working on blocks consistent with the honest hit block.

For a proof sketch of this lemma refer to Appendix D. From
the above we get that any convergence opportunity in Nakamoto
is also a convergence opportunity in Cliquechain. Thus we can
use the convergence opportunity count we derived in §4.3. We
have already shown that block expiry in Cliquechain is satis�ed
under the same conditions as Nakamoto. Thus, we can extend the
consistency theorem of Nakamoto’s protocol to Cliquechain.

C�������� 5.4. Cliquechain satis�es consistency under the same
conditions as stated in Theorem 4.4.

5.4 Cliquechain Consensus Attacks
We evaluate how Cliquechain preforms under a version of the
delay attack of [16]. This attack works on Cliquechain similarly to
how it works on Nakamoto’s protocol. The goal of the adversary
is to delay all honest messages the maximum amount which is
�. The adversary’s strategy is to maximize wasted honest work
by having honest miners work on blocks they don’t know have
already been mined, therefore delaying the growth of the honest
chain(s) while the adversary mines e�ciently on their own secret
chain. With Cliquechain, this attack is thwarted by the fact that the
honest players split their mining power among all chains, so if a
block is mined and delayed on one chain, the honest miners on the
remaining chains that don’t yet have a block on that level, are not
wasting work during that � delay.

To evaluate these attacks we construct Markov models which
represent all possible scenarios of how honest blocks are mined
in a layer of Cliquechain. Crucial to this analysis is the fact that
in Cliquechain no blocks in a new layer can be mined until the
previous full layer is mined. Thus all variations of how a layer is
mined can restart once the full layer has been mined. Figure 8 shows
our Markov models for the 1,2 and 3-chain Cliquechain protocols,
with 1-chain being just the Nakamoto delay attack.

For all models, state S0 represents the state where miners are
mining a fresh new layer, and Si is the state where i chains have a

A0 A1 A2

A0 A1 A2

B0 B1 B2

A0 A1 A2

B0 B1 B2

C0 C1 C2

Figure 7: 1, 2, and 3-chain Cliquechain examples where the
solid line represents a block pointing to a parent block in its
chain, and a dotted line represents a block cross-referencing
another chain. Notice 1-chain is simply Nakamoto’s proto-
col. In anm-chain Cliquechain protocol each block at layer
` points directly their parent (the ` � 1 block of their chain)
plus references to a block in eachm � 1 of the other chains.

1-chain

S0

hit +�

2-chain

S0 S1
Hit

�+Hit + �

hit � +�

3-chain

S0 S1 S2
Hit �+ Hit

Hit  �, +�

�+ Hit +�

C
B

A

Figure 8: Markov chain models capturing the delay attack
on 1, 2 and 3-chain Cliquechain protocols.

block at that layer. We say an attack succeeds if the expected time
for the honest players to mine a block in this model is more than
the expected time for an adversary to mine a block e�ciently. The
expected time for an honest player to mine a block is the expected
time to leave state S0 and get back to state S0 divided by the number
of chains (i.e. how many blocks were added to the honest full braid).

The 1-chain analysis is just the Nakamoto analysis, we analyze
the 2-chain and 3-chain attack in to Appendix E. Figure 9 shows the

10

38



39

Anonymous submission #586 to ACM CCS 2018

A0 A1 A2

A0 A1 A2

B0 B1 B2

A0 A1 A2

B0 B1 B2

C0 C1 C2

Figure 8: 1, 2, and 3-chain Cliquechain examples where the
solid line represents a block pointing to a parent block in its
chain, and a dotted line represents a block cross-referencing
another chain. Notice 1-chain is simply Nakamoto’s proto-
col. In anm-chain Cliquechain protocol each block at layer
` points directly their parent (the ` � 1 block of their chain)
plus references to a block in eachm � 1 of the other chains.

1-chain

S0

hit +�

2-chain

S0 S1
Hit

�+Hit + �

hit � +�

3-chain

S0 S1 S2
Hit �+ Hit

Hit  �, +�

�+ Hit +�

C
B

A

Figure 9: Markov chain models capturing the delay attack
on 1, 2 and 3-chain Cliquechain protocols.

works on Nakamoto’s protocol. The goal of the adversary is to delay
all honest messages the maximum amount �. The adversary’s strat-
egy is to maximize wasted honest work by having honest miners
work on blocks they don’t know have already been mined, there-
fore delaying the growth of the honest chain(s) while the adversary
mines e�ciently on their own secret chain(s). With Cliquechain,
this attack is thwarted by the fact that the honest players split their
mining power among all chains, so if a block is mined and delayed

1 2 4 10 25 60 100
0

1
10

3
10

1
2

c (blocktime in terms of network delay �)

�
(A
dv
er
sa
ry

fr
ac
tio

n)

Delay attack (1-chain)
Delay attack (2-chain)
Delay attack (3-chain)
Our Consistency Analysis

Figure 10: The minimum percentage of computing power
an adversary must hold in order to break consistency for
n = 105, � = 1013, p = 1

c� . We compare the delay attacks
for Cliquechain’s 1-chain, 2-chain and 3-chain models

on one chain, the honest miners on the remaining chains that don’t
yet have a block on that level, are not wasting work during that �
delay.

To evaluate these attacks we construct Markov models which
represent all possible scenarios of how honest blocks are mined
in a layer of Cliquechain. Crucial to this analysis is the fact that
in Cliquechain no blocks in a new layer can be mined until the
previous full layer is mined. Thus all variations of how a layer is
mined can restart once the full layer has been mined. Figure 9 shows
our Markov models for the 1,2 and 3-chain Cliquechain protocols,
with 1-chain being just the Nakamoto delay attack.

For all models, state S0 represents the state where miners are
mining a fresh new layer, and Si is the state where i chains have a
block at that layer. We say an attack succeeds if the expected time
for the honest players to mine a block in this model is more than
the expected time for an adversary to mine a block e�ciently. The
expected time for an honest player to mine a block is the expected
time to leave state S0 and get back to state S0 divided by the number
of chains (i.e. how many blocks were added to the honest full braid).

The 1-chain analysis is just the Nakamoto analysis, we analyze
the 2-chain and 3-chain attack below:

T������ 5.5. For any � > 0, the delay attack on the 2-chain
Cliquechain protocol succeeds when

(1 + � )
2

(l01 + Pr[e10A]l10A + Pr[e10A]l10A ) <
1

(1 � µ )p
except with exponentially small probability in the length of the at-
tack.

P����.

Pr[e01] = 1 l01 =
1
µp

Pr[e10A] = (1 � µp)� l10A = � +
1
µp
+ �

Pr[e10B ] = 1 � Pr[e10A] l10B = [
�X

i=1

i (1 � µp)�µp
Pr[e10B ]

] + �

12



ANALYZING GHOST

40

CCS ’18, October 15–19, 2018, Toronto, ON, Canada Lucianna Ki�er, Rajmohan Rajaraman and abhi shelat

=
P�
j=1 (1 � 2

3 µp)
j�1 2

3 µp (1 � 1
3 µp)

��j (1 � 1
2 µp)

i�1 1
2 µp

Pr[e10B ] =
�X

j=1
PBj l10B =

�X

i=1
i

PBi
Pr[e10B ]

Pr[e10C ] = Pr[one honest hit in  �1 time,
a second honest hit after �2 ]

PCj = Probability �rst hit happens at time j

= (1 � 2
3
µp) j�1

2
3
µp

Pr[e10C ] =
�X

j=1
PCj (1 �

1
3
µp)��j (1 � 1

2
µp) j

l10C = [
�X

j=1
j

PCj
Pr[e10C ]

] + � +
1
µp
+ �

Pr[e12] = (1 � 2
3
µp)� l12 = � +

1
µp

Pi = Probability a hit happens at time i

= (1 � 1
2
µp)i�1

1
2
µp

Pr[e20A] =
�X

i=1
Pi l21A = [

�X

i=1
i

Pi
Pr[e20A]

] + �

Pr[e20B ] = (1 � 1
2
µp)� l20B = � +

1
µp
+ �

LetTi be the expected time to get from state Si to state S0, we have:

T2 = Pr[e20A]l20A + Pr[e20B ]l20B
T1 = Pr[e10A]l10A + Pr[e10B ]l10B + Pr[e10C ]l10C

+ Pr[e12]l12T2

An attack succeeds if the time for the honest players to grow the
chain in this model is more than the time taken for an adversary to
mine a block. Comparing the expectations of the random variables
representing these two measures, we obtain the following condition
for the success of the attack.

1
3
(l01 +T1) <

1
(1 � µ )p

As we stated for the 2-chain analysis, we establish strong concen-
tration bounds (within (1 ± � ) factors for any � > 0) for both
measures using Theorem 3.1 in conjunction with a larger expanded
Markov chain equivalent to the 3-chain of Figure 7, and a Cherno�-
Hoe�ding bound, respectively. This yields the desired condition of
the theorem. ⇤

Figure 8 shows the minimum adversarial percentage needed for
the attacks to succeed for each value of c (where the probability any
block is mined in a round is 1

c� ). We compare this with the lower
bound for anym-chain Cliquechain protocol, which is the same
for Nakamoto’s protocol. We can see that as the number of chains
goes up in the Cliquechain protocol, so does the resilience of the
protocol to the delay attack. At 3-chain, the protocol is essentially
resilient to the attack except for very small c . Note however that
the consistency lower bound remains the same, so there may exist
another attack to which these protocols are susceptible.

0

1A 2A 3A 4A

1B

2B

2C

2D

3C

Figure 9: An example of a block tree where a miner follow-
ing Bitcoin’s longest chain rule would mine on 4A, but a
miner following the GHOST rule would mine on 3C.

6 GHOST ANALYSIS
In this section we extend our method to analyze the GHOST pro-
tocol by Sompolinsky et al. [20]. Section 6.1 provides a summary
of GHOST. We extend our analysis of Nakamoto to GHOST and
introduce a new consensus attack on GHOST and a Markov model
which captures the attack. We note that in their analysis of GHOST,
Sompolinsky et al. de�ne a fork collapse similar to Pass et al.’s con-
vergence opportunity which we use in this paper. We note however
that a crucial point of the analysis we do in this paper is that, under
any adversarial strategy, blocks expire, meaning any block has a
limited time interval in which it can e�ect the mainchain. This is
not the same as the proof provided in [20] which only accounts for
a 50% attack, and not other adversaries.

In §6.4 we show this with an attack of GHOST which utilizes the
concept of the adversary saving blocks they have mined as bank
to be utilized as needed in the attack. In the following section we
introduce the notion of a ‘subtree expiry’ to replace the requirement
of ‘block expiry’.

6.1 Review of GHOST protocol
Themain claim of the GHOST protocol is to be able to handle higher
transaction rates through higher block creation rates and/or larger
block sizes which increase the network delay (i.e. time it takes
for blocks to propagate through the network). The protocol works
by miners keeping track of a tree of blocks instead of a chain and
choosing to mine on the block tree which is heaviest, rather than the
chain which is longest. A block’s weight is calculated by summing
the number of blocks in it’s subtree (i.e. the number of blocks who
directly point to it or who point to a chain which eventually points
to it). Thus a miner starts at the root block and successively picks
the heaviest subtree until it arrives at a childless block to build
on. Figure 9 illustrates this where a miner following the GHOST
rule would mine on block 3C, while a miner following Nakamoto’s
longest chain protocol would mine on 4A. The idea behind this new
rule is that even if two honest nodes mine competing blocks which
point to the same parent block, both blocks still increase the weight
of the parent block and therefore the probability at least the parent
block will be on the mainchain.

12



ANALYZING GHOSTanalyzing ghost

∆H27i
(l − 1, r)

∆H27i
(l, r)

P(l − 1, r)

P(l, r − 1)

P(l, r) P(l + 1, r)

∆`B;?i
(l, r − 1)

∆`B;?i
(l, r)

hr∆

∆7`22

hl∆, al∆ hr

al

hl hr∆, ar∆

hl∆

∆7`22

ar

al

41



ANALYZING GHOST

analyzing ghost

∆H27i
(l − 1, r)

∆H27i
(l, r)

P(l − 1, r)

P(l, r − 1)

P(l, r) P(l + 1, r)

∆`B;?i
(l, r − 1)

∆`B;?i
(l, r)

hr∆

∆7`22

hl∆, al∆ hr

al

hl hr∆, ar∆

hl∆

∆7`22

ar

al

left

right

Parity

41



Summary

Our Markov model framework provides a flexible model to reason 
about the consistency property of different blockchain protocols, 
allowing us to:

• Reduce three different blockchain protocols to the same 
consistency lower bound

• Reason about the success of attacks on consistency

Future work: continue to extend our analysis to different protocols and 
attacks.

43



thx



H,q,H,Q,H,Q,H,q,H,q,H,q,...,  


