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Abstract— Under CPA and CCA1 attacks, a secure bit encryp-
tion scheme can be applied bit-by-bit to construct a secure many-bit
encryption scheme. The same construction fails, however, under
a CCA2 attack. In fact, since the notion of CCA2 security was
introduced by Rackoff and Simon [21], it has been an open question
to determine whether single bit CCA2 secure encryption implies
the existence of many-bit CCA2 security. We positively resolve this
long-standing question and establish that bit encryption is complete
for CPA, CCA1, and CCA2 notions.

Our construction is black-box, and thus requires novel tech-
niques to avoid known impossibility results concerning trapdoor
predicates [10]. To the best of our knowledge, our work is also
the first example of a non-shielding reduction (introduced in [9])
in the standard (i.e., not random-oracle) model.
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1. INTRODUCTION

A fundamental research program in cryptography is to

classify the minimal assumptions that are sufficient to

build secure primitives. We investigate this question for the

case of encryption schemes secure against a full chosen-

ciphertext (CCA2) attack. Prior results—some quite recent—

show that CCA2-secure encryption can be constructed from

enhanced trapdoor permutations [7], [24], lossy trapdoor

functions [20], non-correlateable functions [23], and of

course specific number theoretic assumptions such as de-

cisional Diffie-Hellman [5]. Despite this recent progress,

a seemingly straightforward question has remained open:

given a CCA2-secure encryption primitive that encrypts only

one bit messages, is is possible to construct a CCA2-secure

scheme that encrypts longer messages? We show that one-

bit primitives are in fact necessary and sufficient, i.e., that

one-bit encryption is complete for CCA2 encryption.

Theorem 1. {CPA,CCA}-secure encryption schemes exist

iff 1-bit {CPA,CCA}-secure encryption exists.

One direction of this theorem follows by inspection; the

non-trivial direction ultimately follows from a new line of

reasoning in Theorem 4. For the weaker cases of CPA

and CCA1-secure schemes, the completeness of one-bit

encryption for CPA was established almost immediately in

the seminal encryption paper by Goldwasser and Micali [13],

and for CCA1 by Naor and Yung [17]. The solution is
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to encrypt the long message bit-by-bit. A simple hybrid

argument proves the security of such constructions. In both

cases, it is essential that the adversary does not have ac-

cess to a decryption oracle after receiving the challenge

ciphertext. Removing this constraint as per the case in CCA2

security totally breaks the bit-by-bit scheme. Recall that in

a CCA2 attack, the adversary’s decryption oracle responds

to all queries except the challenge ciphertext. Therefore, an

adversary can easily reorder the bit-by-bit encryption to form

a new encryption, submit this to its decryption oracle, and

use the oracle’s response to recover the challenge plaintext.

One may imagine several ad-hoc mechanisms to prevent

this type of attack. However, the adversary has another

strategy that is more cumbersome to defeat: the adversary

can “quote” a single-bit ciphertext from the long challenge

ciphertext in a long ciphertext of its own making. By using

the decryption oracle’s output on this new cut-and-pasted

ciphertext, the adversary can eventually learn the plaintext

bit hidden by the single-bit ciphertext. By repeatedly apply-

ing this technique, the adversary can then decode all of the

single-bit ciphertexts in the long challenge and eventually

retrieve the underlying many-bit plaintext. We call such

attacks quoting attacks. It is not immediately obvious how

to prevent quoting attacks when using an encryption scheme

that only handles one-bit messages. The crux of our technical

contribution is to prevent this type of attack.

We note that in the Random Oracle Model it is known that

single-bit encryption implies multi-bit encryption (e.g., [8]),

but the foundational deficiencies of the Random Oracle

model are well known [2], [12].

1.1. Background and Prior Work

There are three common definitions for security of an en-

cryption scheme: i) Semantic or CPA Security introduced by

Goldwasser and Micali [13], ii) CCA1 Security introduced

by Naor and Yung [17], and iii) CCA2 security introduced by

Rackoff and Simon [21]. Rackoff and Simon did not present

a traditional encryption scheme that satisfied their notion, but

subsequently, Dolev, Dwork, and Naor [7] present one that

relies on the existence of trapdoor permutations. Dolev et al.

also introduce the notion of non-malleability of encryption

schemes and show that CCA2-security and non-malleable

CCA2-security can coincide. Cramer and Shoup [5] present



a practical CCA2-encryption scheme based on the specific

Decisional Diffie-Hellman assumption. They later generalize

their theory and show that smooth projective hash functions

suffice [6]. Sahai [24] shows that ideas presented by Naor

and Yung [17] can be applied to build CCA2 schemes,

but this construction uses simulation sound NIZK proofs

which—as far as we know—also require trapdoor permuta-

tions. Lindell [16] simplifies the construction of Sahai, but

still requires trapdoor permutations. Recently, Peikert and

Waters [20] show that lossy trapdoor functions suffice to

construct CCA2 encryption and can be instantiated under

lattice-based assumptions. Rosen and Segev [23] extend the

idea to show how to use trapdoor functions secure under

correlated products. Contemporaneously, Wee [26] shows

that a CCA2 encryption scheme for ω(log k) bits can be

used to construct a many-bit CCA2 scheme. To the best

of our knowledge, our result establishes the first necessary

and sufficient condition for the existence of many-bit CCA2

encryption.

1.2. Overview of our techniques

As mentioned above, one key challenge we face with

using a one-bit scheme to construct a many bit CCA2

scheme is the prevention of quoting attacks; i.e., when the

adversary submits decryption queries that contain part of the

challenge ciphertext.

To be sure, suppose that the adversary A never quotes the

challenge ciphertext. In this case, the security of the many bit

scheme can be directly reduced to the security of the one-bit

CCA2 scheme: simulate the one-bit security experiment for

adversary A and use the one-bit decryption oracle directly to

answer all of A’s decryption queries. The oracle will answer

all of A’s queries because by assumption, all of them will

differ from the one-bit challenge ciphertext. In fact, as a first

step in §3, we formalize this notion of “unquoted CCA2”

security as UCCA security and show that one-bit CCA2

security implies many-bit UCCA security.

What this suggests is that any successful attack to a

proposed many-bit construction must involve a quoted query.

Thus, our goal is to construct a scheme which prevents

quoting. One simple approach is to make the ciphertext

“self-authenticating” by encoding the random coins used to

produce the ciphertext as part of the ciphertext (without,

of course, breaking its security). The decryption algorithm

can then decrypt the many-bit ciphertext and re-encrypt the

appropriate single-bits with the encoded random bits to ver-

ify the ciphertext’s correctness. This approach would seem

to prevent single ciphertexts from being quoted from the

challenge ciphertext because the adversary cannot determine

the appropriate random bits to encode.

One problem with this simple approach arises from a

result by Gertner, Malkin, and Reingold [10] who show

that a black-box construction of a poly-to-one trapdoor

function from a CCA2 secure one-bit encryption primitive is

impossible.1 As a result, this simple approach cannot hope

to recover all of the random bits used to form the ciphertext,

since doing so would seem to create a poly-to-one trapdoor

function for many natural constructions.

These observations lead us to our first candidate con-

struction which is based on nested encryption, i.e. it is

an encryption of an encryption. The inner-layer, denoted

α = enc(κ), consists of an encryption of a pseudo-random

function key κ. The bits of the ciphertext α are then

encrypted in a bit-by-bit fashion using the 1-bit CCA2-

secure scheme. The random tape used in this bit-by-bit

process is generated by using a pseudo-random function

(PRFG) keyed on κ to produce a pseudo-random string

of appropriate length (i.e., Fκ(1)||Fκ(2)|| . . .).2 These outer

ciphertexts are denoted as β = β1, β2, . . . , β|α|. (Notice that

the random coins used to encrypt the inner-layer are not

recovered so as to avoid the noted impossibility result.) To

encrypt a message, we treat Fκ(0) as a random key, and

use a result of Shoup [25] which shows that a CCA2-secure

key encapsulation mechanism (KEM) suffices to construct

CCA2-secure encryption scheme. To decrypt a ciphertext

C, first decrypt β and then α to recover κ. Then verify that

β = enc(α;Fκ(1)|| . . .). Upon verification, use the KEM

mechanism to recover the message.

Unfortunately, even this scheme may still not prevent

quoting. It might be possible to reorder the outer-layer β
ciphertexts in a way that reorders the α ciphertext. Further-

more, this reordering might change the PRFG key κ into a

related key κ′ such that the pseudo-random bits constructed

by Fκ′ are consistent with those of Fκ. If possible, this

“mauling strategy” would pass the validity check on the

outer-layer ciphertexts and allow the adversary to learn the

original message. To prevent this, we instead use a non-

malleable inner-layer encryption system. More specifically,

we modify a construction of Choi et al. [3] to construct a

non-malleable UCCA scheme from a 1-bit CCA2 scheme.

One key factor that we discuss below is that we only need

the inner scheme to satisfy a weak form of non-malleability.

We take advantage of the black-box construction of Choi et

al. to ensure that our construction is also entirely black-box.

κ NM-Enc α1 . . . αz Bit Enc

Fκ(1) . . . Fκ(z)

β1, . . . , βz

Figure 1. Cartoon of our scheme CCA2 KEM scheme P

Intuitively, these measures make a quoting attack difficult

because the adversary needs to find the pseudo-randomness

1Technically, they prove their result from trapdoor predicates, but it is

easy to see that their oracle trapdoor predicate represents a CCA2 secure

one-bit encryption scheme.
2A pseudo-random generator would suffice, but would introduce cum-

bersome notation and awkward parsing.



used to generate the outer layer encryptions before it can

perform such an attack. Formally proving this, however, is

not so straightforward. In the inner-ciphertext α, information

about the plaintext κ is used to generate the random tapes

Fκ(i) used to form β, and therefore standard encryption

security for β does not immediately apply. Moreover, infor-

mation about the key to Fκ is present in the ciphertext α, and

so standard security of the PRFG also does not immediately

apply. In other words, since we cannot guarantee outright

security of the pseudo-random key, it may be possible for

the adversary to use the decryption oracle to advantage to

learn about the pseudo-random key and then unwind the

construction’s supposed security from there.

Proof techniques: To overcome these issues, our secu-

rity proof carefully analyzes the type of decryption queries

that an adversary must make to break our system. Informally,

there are two types of quoting queries with respect to the

challenge ciphertext C∗: (1) an α-quoted query is one that

quotes from the α component of C∗, and (2) a β-quoted

query is one that quotes from the β-component of C∗.
Our first observation in Lemma 1 is that an adversary

that makes an α-quoted query must have (except with

low probability) already (or concurrently) submitted a β-

quoted query. This argument is based on a series of hybrid

experiments and relies on the UCCA security of both the

inner and outer schemes.

Next, in Lemma 2, we consider an adversary A that breaks

our scheme. If adversary A never asks a β-quoted query,

then by Lemma 1, it also (almost) never asks an α-quoted

query. Since such an adversary never asks a quoted query, it

would therefore violate the UCCA security of the inner or

outer schemes. Thus, in Lemma 2, we conclude that any

adversary that breaks our scheme must ask a successful

(i.e., one that does not decrypt to ⊥) β-quoted query with

noticeable probability.

Finally, in Theorem 4, we complete the security argument.

We show that any adversary that makes a successful β-

quoted query can be used to violate the non-malleability

of the inner encryption scheme. In particular, such an

adversary, when given α = enc(κ) can construct a related

ciphertext α′ = enc(κ′) for which enc(αs; Fκ(s)) =
enc(α′t; Fκ′(t)), for some s and t.

Roadmap: In §3.1, we introduce a new notion of

unquoted security—denoted UCCA-security—and show that

although the bit-by-bit scheme is not CCA2 secure, it does

satisfy UCCA-security. Notice that non-malleability is not

immediately implied by the unquotable CCA2 notion, as the

adversary can still modify the challenge ciphertext, even if

it cannot directly decrypt it. Thus, our next step in §3.2

is to transform a UCCA-secure scheme into a 1-wise non-

malleable UCCA-secure scheme using ideas from Choi et

al [3]. In this limited form of non-malleability, the adversary

can only submit one decryption query. Finally, in §4 we

combine the pieces and construct the fully CCA2 secure

many-bit encryption scheme.

2. BASIC DEFINITIONS & NOTATION

We assume familiarity with the standard notions and

notation for negligible functions, indisitinguishibility, and

encryption schemes. When A is a randomized algorithm,

we use the notation A(x; r) to indicate that algorithm

A is executed on input x using random tape r. When r
is not specified, it is assumed that A is executed on x
using a uniformly chosen random tape. We use || to denote

concatenation, and [n] = {1, .., n}.
We will use Π = (g, e, d) to denote a CCA2-secure

one-bit encryption scheme and Πv = (gv, ev, dv) to denote

the system that results from concatenating encryptions from

Π together to form a multi-bit unquoted CCA2 secure

encryption system. We will use ΠNM = (nmg, nme, nmd) to

denote our intermediate 1-wise NM UCCA secure scheme,

and finally, P = (G,E,D) to denote a CCA2-secure key

encapsulation mechanism. One of our constructions makes

use of a strong one-time signature scheme, essentially a

digital signature scheme that can be used to sign only one

message, but is strongly existentially unforgeable so that an

adversary cannot even create an alternate signature to the

signed message. In the proceedings version we refer the

reader to [15], [22] for details.

Definition 1 (1-bit CCA2 security). Let Π = (g, e, d) be

a one-bit encryption scheme and let the random variable

CCA2b(Π, A, k), where b ∈ {0, 1}, A is a p.p.t. algorithm

and k ∈ N, denote the result of the following probabilistic

experiment:

CCA2b(Π, A, k)
(1) (pk , sk)← g(1k)
(2) y ← epk (b)
(3) b′ ← Ad∗(sk,·)(y) (b′ ∈ {0, 1})
(4) Output b′

(The decryption oracle d∗ returns ⊥ when queried on the ciphertext

y, but otherwise decrypts the query using sk .)

Π is CCA2 secure if for all p.p.t. algorithms A the following

two ensembles are computationally indistinguishable:{
CCA20(Π, A, k)

}
k∈N
≈s

{
CCA21(Π, A, k)

}
k∈N

We give the definition of a CCA2 Key Encapsulation

Mechanism below.

Definition 2. A key-encapsulating mechanism

P = (G,E,D) is CCA2 secure if, for all probabilistic

polynomial time (resp. poly size circuit families)

adversaries A = (A1, A2) and for all sufficiently large

k: Pr[CCA2KEM(P, A, k) = 1] ≤ 1/2 + µ(k), for some

negligible function µ. We define the experiment CCA2KEM

as follows:



CCA2KEM(P, A, k)

(1) (PK ,SK )← G(1k)
(2) S ← ADSK

1 (PK )
(3) b← {0, 1}
(4) (kb, C

∗)← EPK (1k)
(5) k1−b ∈R {0, 1}k

(6) b′ ← A
D∗SK
2 (C∗, k0, k1, S)

(7) Output 1 if b = b′ else Output 0.

The oracle D∗SK is the standard decryption oracle that

answers all queries except the challenge C∗.

3. UNQUOTED CCA2 ENCRYPTION AND q-WISE

NON-MALLEABILITY

As mentioned earlier, our many-bit CCA2 secure primitive

will be constructed from two other schemes. For one of

these, we need a many-bit encryption scheme that has some

minimal non-malleability properties as well as unquoted

CCA2 security properties. In this section we define these

properties, and describe the construction. Let us first give

an informal summary of these two notions.

Unquoted CCA2 Security: We say that a scheme

(gen,enc,dec) is unquoted CCA2 secure if it conforms to a

weakening of the traditional CCA2 definition: the decryption

oracle that the adversary queries after being issued the

challenge ciphertext does not respond to queries that have

been “quoted” from the challenge ciphertext. In particular,

let C∗ be the challenge ciphertext in the CCA2 definition, the

limited decryption oracle will respond with ⊥ to any query

C ′ in which decsk (C ′) and decsk (C∗) make an identical

query to d (Since the construction of dec is black-box, we

can discuss it making queries to a d oracle). We note that

it is exactly such queries an adversary cannot simulate in

many proofs of security. Concatenated bit-by-bit encryption

achieves this limited security definition.

q-wise Non-Malleability: The natural weaker notion of

non-malleability that we introduce is denoted q-NM-CCA1

security. Recall that the original definition of non-malleable

encryption systems from [7] was shown by Bellare and

Sahai [1] and Pass et al. [19] to be roughly equivalent to

a notion of indistinguishability of the plaintexts that result

from a parallel query to a decryption oracle in two related

experiments. More specifically, the adversary is asked to

produce two plaintexts, m0 and m1, and based on the

experiment b ∈ {0, 1}, the adversary receives a challenge

encryption of mb (note the adversary does not know b). In

the traditional NM-definition, an adversary outputs a tuple of

ciphertexts whose decryptions should be computationally in-

dependent in the two experiments. The adversary can choose

the size of this tuple, and the size can be polynomially-

related to the security parameter. In a q-NM-S definition,

the size of this output tuple of ciphertexts is upper-bounded

by q. That is, a scheme is q-NM-S secure if the adversary

cannot find a tuple of q encryptions in each experiment

whose plaintexts can be efficiently distinguished. For our

construction of a many-bit CCA2 primitive, we only need

a construction to be 1-NM-UCCA secure scheme, but in

principal our construction works for any constant q. This

weaker notion of q-wise non-malleability may be of inde-

pendent interest. Notice that 1-NM-UCCA security implies

UCCA security. Notice also that q-wise non-malleability

is stronger than the q-bounded CCA2 security notion put

forth in Cramer et al. [4] because the q-wise non-malleable

adversary can make arbitrarily many queries before receiving

the challenge ciphertext.

3.1. Unquoted CCA2 Security

We begin by giving a formal definition of the CCA2

Security property.

Definition 3 (Unquoted CCA2 Security). Let Π′ =
(genΠ,encΠ,dec

Π) be an encryption scheme that makes

black-box access to a one-bit encryption scheme Π =
(g, e, d). Π′ is UCCA secure with respect to Π if for all

p.p.t. adversaries B = (B1, B2):

{UCCA0(Π, B, k)} ≈s {UCCA1(Π, B, k)}

Here UCCAb is defined as the following experiment:

UCCAb(Π
′, B, k)

(pk , sk)← gen(1k)

(m0,m1, S1)← B
decsk
1 (NPK) s.t. |m0| = |m1|

y ← encpk (mb)

b′ ← B
bdecsk c
2 (y, S1)

Output b′

Let Qdecsk (c)
be the set of queries to the oracle d made dur-

ing computation decsk (c). We define bdecskc as decryption

oracle that responds with ⊥ to the challenge query y and

to queries c 6= y if Qdecsk (c)
∩Qdecsk (y)

6= ∅. Further, we

say such a query c contains a quoted query, or in cases

where the context is clear we may say query c is quoted.

Observe that testing whether a query is quoted may not

be efficiently computable by the adversary; one might worry

that the use of the oracle could leak information about

whether a query is quoted, and therefore leak information

about the secret key. For the constructions that we propose,

however, testing for a quoted query is easy.

Theorem 2. Let Π = (g, e, d) be a 1-bit CCA2 secure

encryption scheme. For a polynomial p define the many-

bit concatenating construction Πv = (gv, ev, dv) where

gv = g; for a security parameter k and message m =
(m1, . . . ,mp(k)) of length p(k) we define evpk (m) =
epk (m1)|| . . . ||epk (mp(k)), and dv is defined analogously.

Then Πv is UCCA-secure.

Proof: Omitted. See final version

3.2. q-NM Security

Definition 4 (q-wise NM Security). Let ΠNM =
(nmg, nme, nmd) be an encryption scheme. For S ∈
{CPA,CCA1,CCA2,UCCA2}, let OS,1 and OS,2 be the pair



of decryption oracles made available to the adversary in

the S security experiment before (OS,1) and after (OS,1) the

adversary is given the challenge ciphertext. We say that ΠNM

is q-wise NM secure with respect to an S-adversary if for

all p.p.t. S adversaries A and distinguishers D respectively:

{q-NM-S0(ΠNM, A,D, k)} ≈s {q-NM-S1(ΠNM, A,D, k)}

q-NM-S is defined as follows:

q-NM-Sb(Π, A,D, k)

1) (NPK, NSK)← nmg(1k)

2) (m0,m1, σ1)← A
OS,1
1 (NPK) such that |m0| = |m1|

3) y ← nmeNPK(mb)

4) (c1, . . . , cq, σ2)← A
OS,2
2 (y, σ1)

5) Output D(d1, ..., dq, σ2) where
di ← nmd(NSK, ci) if ci 6= y

Note that in contrast to the definition of non-malleability

in the work of Pass et al. [18] and Choi et al. [3], we permit

the adversary to pass state information to the distinguisher.

Such information is usually redundant since the adversary

can encrypt this state information and include it in its output

vector; however, since we only allow q output ciphertexts,

this extra information may be needed. Such state information

was present in the definitions of Bellare and Sahai [1].

3.2.1. 1-NM-UCCA Secure construction: We give our

construction in Fig. 2. The scheme is a modification of

that of Choi et al. [3]. They produce a NM-CPA secure

encryption scheme from a CPA secure primitive. In contrast,

we start and end with stronger primitives. We construct

from a many-bit UCCA2 secure primitive a many-bit 1-

NM-UCCA2 secure primitive. It may be possible to use

the notion of designated verifier NIZK employed by Pass

et al. [18] to complete this step; however, doing so would

be more complicated and would make the construction non-

blackbox.

Theorem 3. If Πv is a multi-bit UCCA secure scheme, then

the encryption scheme ΠNM in Fig. 2 is a 1-NM-UCCA2

secure scheme.

Proof: The proof follows ideas from [3] with modifi-

cations. See full version.

4. MANY BIT CCA2 SECURE ENCRYPTION SCHEME

We now construct a CCA2 multi-bit encryption scheme

using our 1-NM-UCCA2 secure scheme ΠNM and our many-

bit UCCA2 encryption scheme Πv. Both ΠNM and Πv are

constructed in a black-box manner from our 1-bit CCA2

encryption scheme Π. Let F be a PRFG (equivalently, a

PRG can be used, but the PRFG simplifies the notation).

We construct a many-bit scheme that effectively encrypts

a pseudo-random seed of appropriate length. We can then

use this in a hybrid encryption scheme, as described by

Cramer and Shoup [5], [25], to construct a many-bit arbitrary

• Assume that the input message length equals the se-
curity parameter k. Let Πv = (gv, ev, dv) be a
many-bit UCCA secure encryption scheme. Let Σ =
(GenSignKey, Sign,Verify) be a strong one-time signa-
ture scheme in which verification keys are of length k.
Let z(k) = |nmeNPK(m)| for (pk , sk) ← nmg(1k) and

m ∈ {0, 1}k. Let F be a PRFG s.t. for K ∈R {0, 1}k:

FK : {0, 1}z(k) → S where S = {S | S ⊂ [10k]∧ |S| =
k}.

• nmg(1k)

1) (pkbi,j , sk
b
i,j) ← gv(1k) for all i ∈ [k], j ∈

[10k], b ∈ {0, 1}
2) Pick K ∈R {0, 1}k
3) Output NPK = {(pk0

i,j , pk
1
i,j |i ∈ [k], j ∈ [10k]}

and NSK = {K, (sk0
i,j .sk

1
i,j)|i ∈ [k], j ∈ [10k]}

• nme(NPK,m)

1) Pick a deg-k poly p(x) = m0 +α1x+ · · ·+αkx
k,

α1, . . . , αk ∈R GF (2k), αk 6= 0
2) sj ← p(j), ∀j ∈ [10k]
3) (SigSK, SigVK)← GenSignKey(1k)
4) Let (v1, ..., vk) be the bits of SigVK
5) ci,j ← evpk

vi
i,j

(sj), ∀i ∈ [k], j ∈ [10k]

6) σ ← SignSigSK([ci,j ]{i∈[k],j∈[10k]}).

7) Output (c, SigVK, σ)

• nmd(NSK, C = (c,SigVK, σ)))

1) If VerifySigVK(σ, c) = ⊥ Then Output ⊥
2) sj ← dvsk

v1
1,j

(c1,j) ∀j ∈ [10k]

3) Let w = (w1, ..., w10k) be a Reed-Solomon code-
word that agrees with (s1, . . . , s10k) in at least 9k
positions.

4) If no such codewordOutput ⊥
5) S ← FK(C) (Choose Columns)
6) ∀j ∈ S if((

wj = dvsk
v1
1,j

(c1,j) = · · · = dvsk
vk
k,j

(ck,j)
)
6= >

)
Output ⊥ Else Output m

Figure 2. THE NON-MALLEABLE ENCRYPTION SCHEME ΠNM

message encryption scheme using a PRFG and MAC. Note

that the existence of a PRFG and a MAC are implied by

the existence of a 1-bit CCA2 encryption scheme [14],

[11]. We give the definition of a CCA2 secure public key

encapsulation mechanism (PKEM) in Def. 2.

We construct a many-bit CCA2 secure PKEM system as

described in Fig. 3 (pg. 6). The construction consists of two

layers. In the first inner layer, a random key k for a PRFG F
is encrypted using a 1-NM UCCA2 scheme. The ciphertext

output of the inner-layer, denoted α, is then encrypted using

an outer-layer encryption scheme which is UCCA2 secure,

but in which the random-bits used to encrypt are given by

Fk(i). Call this output β. The pseudo-random bits used to

construct the ciphertext β are checked by the decryption

algorithm to ensure β’s validity. It is this property that makes



our construction a non-shielding construction, as defined by

Gertner et al. [9].

We will refer to the inner encryption and its scheme as the

α layer and α encryption system, respectively. Similarly, we

refer to the outer encryption and its scheme as the β layer

and the β encryption scheme.

Let Πv = (gv, ev, dv) be a many-bit UCCA scheme

Let ΠNM = (nmg, nme, nmd) be a many-bit 1-NM-
UCCA scheme (as per §3.2).

• G(1k)

1) (pk , sk)← gv(1k).

2) (NPK, NSK)← nmg(1k).
3) Output PK = (pk , NPK) and SK = (sk , NSK).

• E(PK , R)

1) Choose κ, i, r ∈R {0, 1}k
2) α← nmeNPK(κ; r)
3) Z ← Fκ(1)||Fκ(2)||...||Fκ(|α|)
4) β = evpk (α; Z)
5) Output (Fκ(0), β)

• D(SK , C′)

1) Set α′ ← dvsk (C′). If ⊥ ∈ α′ then output ⊥.
2) Set κ← nmdNSK(α′). If κ = ⊥ then output ⊥.
3) If evpk (α′; (Fκ(1)||Fκ(2)||...||Fκ(|α′|))) 6= C′

then output ⊥.
4) Output Fκ(0).

Figure 3. CCA2 KEM ENCRYPTION SCHEME P

Note that scheme P is a black-box construction that can

be viewed as (GΠNM,Πv ,EΠNM,Πv ,DΠNM,Πv ), where ΠNM =
(nmgΠ, nmeΠ, nmdΠ) and Πv = (gvΠ, evΠ, dvΠ).

In order to prove that P is secure, we need to formalize the

notion of quoted queries made by the adversary. Specifically,

we are interested in queries to the decryption oracle DSK

that result in queries to the constituent decryption algorithms

nmdNSK or dvsk that would not be permitted by the de-

cryption oracles in the unquotable CCA2 (UCCA2) security

definitions of the constituent schemes Πv or ΠNM. To this

end we define α- and β-quoted queries with respect to our

construction P = (GΠNM,Πv ,EΠNM,Πv ,DΠNM,Πv ).

Definition 5 (α-quoted, β-quoted, and successful queries).

Let βSK,C = {(ski, ci)} be the set of queries made to the

one-bit encryption scheme d(·) by dv(·) in line (1) when

invoked by decryption algorithm DΠNM,Πv (SK,C).

Similarly, let αSK ,C = {(sk i, ci)} be the set of

queries made to the one-bit decryption algorithm d
that nmdΠ(NSK, c) makes in line (2) when invoked by

DΠNM,Πv (SK,C).

— A decryption query C is a β-quoted query with respect

to challenge C∗ if βSK ,C ∩ βSK ,C∗ 6= ∅.
— A decryption query C is an α-quoted query with respect

to challenge ciphertext C∗ if αSK ,C ∩ αSK ,C∗ 6= ∅.
— Finally, a query C is successful if D(SK , C) 6= ⊥.

We note that our experiments require an efficient algo-

rithm to determine whether a query C is a β-quoted query

with respect to challenge C∗. For our proposed schemes

P and Πv, this task can be done by parsing and string

comparisons. Similarly, in certain experiments the adversary

will have access to the α ciphertext that is encrypted in the

challenge ciphertext C. In these cases, it is also possible to

check whether a query C is an α-quoted query with respect

to C∗. Finally, there are certain situations in which C∗

represents an encryption of either an α0 or α1 encryption.

In these situations, we refer to an α0-quoted query, or an

α1-quoted query.

Our goal is to show that any purported adversary of P that

breaks its CCA2 security must ask a successful β-quoted

query to the decryption oracle. In order to do this, we first

show that any α-quoted query must be preceded by a β-

quoted query.3 Then we argue that if there are no quoted

queries, then the UCCA-security suffices. Thus, we conclude

that the adversary must make either a β-quoted query or an

α-quoted query. Altogether, these two observations imply

that any adversary that successfully breaks the CCA2KEM

security of P must make an interesting β-quoted query with

non-negligible probability.

Intuitively, a β-quoted query must be made, because

everything contained in the challenge ciphertext is encrypted

bit-by-bit with a CCA2 secure encryption system, so each of

those bits is individually secure, and no information is leaked

about them. Further, none of the individual bit encryptions

can be mauled to try and learn information, so the adversary

must maul the ciphertext by performing a β-quoting. The

reason why an α-quoted query must be preceded by a β-

quoted query is because the α-quoted queries contained in

the challenge ciphertext are encrypted by the outer-layer of

β-quoted queries. Therefore, for the adversary to embed an

α-quoted query, it must first try to decrypt β-quoted queries

to learn how to make an α-quoting. Alternately, it may

simply attempt to cut-and-paste an α-query in to a ciphertext

it creates, but in those cases the β-quoted encryptions on the

outer layer of the α-query will be decrypted prior to the α-

quoted query being decrypted.

For the following lemma, one needs to define a natural

ordering on α- and β-quoted queries given a series of

decryption oracle queries made by the adversary. Intuitively,

the decryption algorithm D must process the β-quoted

ciphertexts before the α-quoted queries as it encounters them

first.

Definition 6. Suppose an adversary A makes a series of

decryption oracle queries C1, C2, ...., and suppose that two

queries Ci and Cj contain α- or β-quoted queries with

respect to a challenge ciphertext C∗ given to the adversary.

Then if i < j, we say that the quoted query in Ci preceded

3The notion of “preceded” is formalized in Def. 6



the quoted query in Cj . If i = j, then we say that the β-

quoted query in Ci precedes the α-quoted query in Cj .

To simplify, we often assume that the adversary is given

auxiliary information containing an index denoting the first

query of a certain form to a decryption oracle. In all cases,

the value of these indices can be guessed by the adversary

for a polynomial factor reduction in the adversary’s effec-

tiveness in the security reductions.

Lemma 1. Let A = (A1, A2) be a CCA2KEM adversary

for the many-bit construction P = (G,E,D) described in

Fig. 3. The probability that A makes an α-quoted query

that is not preceded by a β-quoted query is negligible.

Proof: (Sketch) Suppose that for infinitely many k,

adversary A2, on input a challenge ciphertext C∗, asks an

α-quoted query C ′ 6= C∗ that has not been preceded by a

β-quoted query with non-negligible probability 1/p(k), for

some polynomial p. We argue that A2 can be used to break

the UCCA2 security of the Πv encryption scheme. First, we

assume that A2 is in a normalized form so that it always

makes a fixed number of queries. Let ik be the smallest

index for which there is a non-negligible probability that

the ik
th oracle query by A2 in CCA2KEM(P, A, k) contains

an α-quoted query that has not been preceded by a β-

quoted query. We consider the following experiment Expr1

simulating CCA2KEM(P, A, k) until the ikth query.

Expr1(P, A, k, ik)

1) (PK ,SK )← G(1k)
2) S ← ADSK

1 (PK )
3) b ∈R {0, 1}
4) (Kb, C

∗)← EPK (1k)
5) K1−b ∈ {0, 1}k
6) Simulate ADSK

2 (C∗,K0,K1, S) for ik queries
7) Output 1 if the ikth query contains an α-quoted query that

has not been preceded by an α- or β-quoted query.

8) Output 0

By inspection, it holds that for infinitely many k,

Pr[Expr1(P, A, k, ik) = 1] ≥ 1/p(k). We define a

new experiment Expr2(P, A, k, ik) that is identical to

Expr1(P, A, k, ik), except that we replace the algorithm E
that is called in line 4 of Expr1, with a modification of it

named E2 described below. It modifies E so that the PRFG

key used to generate the KEM key and produce randomness

for the outer-layer of encryptions is independent of the key

encrypted in the inner layer. Changes are in lines 1,2 and 4.

E2(PK , R)

1) Choose κ, κ′ ∈R {0, 1}k
2) α← nmeNPK(κ′)
3) β = evpk (α;Fκ(1)||Fκ(2)||...||Fκ(|α|))
4) Output{Fκ(0), β}

Claim 1. {Expr1(P, A, k, ik)} ≈s {Expr2(P, A, k, ik)}

The proof is by contradiction. If not, then we show how

A can be used to break the UCCA security of ΠNM. We

construct an adversary B = (B1, B2) that simulates one of

the experiments for A = (A1, A2).

BnmdNSK

1 (NPK, 1k)

1) (pk , sk)← gv(1k)
2) Let PK = (NPK, pk) and SK = (NSK, sk).

3) Run (SA)← ADSK (PK ). Answer queries to DSK (C) using
oracle nmdNSK and key sk .

4) Output (κ0, κ1, SB = (PK , sk , κ0, κ1, SA)).

B
nmd∗bNSKc
2 (pk , SB , c∗)
1) b ∈R {0, 1}
2) Let C∗ ← evpk (c∗; (Fκ0(1)||Fκ0(2)||...||Fκ0(|c∗|)))
3) Let Kb ← Fκ0(0) and let K1−b ∈R {0, 1}k.
4) Simulate ADSK

2 (C∗,K0,K1, SA) for ikth queries.
Answer queries to DSK (C) by using the decryption oracle
bnmdNSKc and key sk to run D. If an α- or β- quoted query
is encountered prior to the ikth decryption query, then quit
the simulation and output 0.

5) If query ik is an α-quoted query and not a β-quoted query
Then output 1. Else output 0.

Notice that both Expr1 and Expr2 output 0 if there are

early α- or β-quoted queries. This allows adversary B to

mimic this behavior because B2 can detect when A submits

an early α- or β-quoted query and then output 0.

Observe that Pr[UCCA0(ΠNM, B, k) = 1] =
Pr[Expr1(P, A, k, ik) = 1]. On the other hand,

Pr[UCCA1(ΠNM, B, k) = 1] = Pr[Expr2(P, A, k, ik) = 1].
Therefore

Pr[UCCA0(ΠNM, B, k) = 1]− Pr[UCCA1(ΠNM, B, k) = 1]
= Pr[Expr1(P, A, k, ik) = 1]− Pr[Expr2(P, A, k, ik) = 1]
≥ 1/q(k)

This difference is noticeable and therefore contradicts the

UCCA security of ΠNM.

We define a new experiment Expr3(P, A, k, ik) that is

identical to Expr2(P, A, k, ik), except that we modify E2

by replacing the output of the PRFG Fκ with that of a

random function. Specifically, we replace line 2 of E2 with

β ← evpk (α; R) for a randomly chosen R. Similarly,

we replace line 5 of E2 with Output{R′, β} for randomly

chosen R′ ∈R {0, 1}k.

Claim 2. {Expr2(P, A, k, ik)} ≈s {Expr3(P, A, k, ik)}

This is a standard argument that follows from the security

of a PRFG. (Proof omitted for space.)

We now introduce a new adversary B, that by virtue

of Expr3(P, A, k, ik), can be used to break the UCCA2



security of Πvk = (gv, ev, dv). The adversary B simulates

A’s execution in Expr3.

— B
dvsk
1 (pk , 1k)

1) (NPK, NSK)← nmg(1k)
2) Let PK = (NPK, pk) and SK = (NSK, sk).

3) Simulate SA ← ADSK
1 (PK )

For queries DSK (C) simulate the decryption algorithm
using the decryption oracle dvsk and NSK.

4) κ0, κ1 ∈R {0, 1}k
5) αa ← nmeNPK(κa), a ∈ {0, 1}
6) Output (α0, α1, SB = (SA, NSK,PK ))

— B
bdvsk c
2 (pk , SB , C

∗)

1) K0,K1 ∈R {0, 1}k.
2) g ∈R {0, 1}.

3) Simulate ADSK
2 (PK , C∗,K0,K1) until the ikth query.

Answer queries to DSK (C) by using the decryption
oracle bdvskc and NSK. If an α0-,α1- or β-quoted query
is encountered prior to the ikth decryption query then
Output g. Otherwise let Cik be the ikth query.

4) If Cik has a β-quoted query, output g.
5) Let α′ ← dvsk (Ci).
6) If α′ contains quoted queries with respect to αa then

output a.
7) Output g.

Notice that B runs a perfect simulation of Expr3 for A
until such time as there is a quoted query. When this event

happens, note that B2 executes and halts on line 6. Denote by

QUOTE the event that B2 executes line 6 and let p′(k) denote

its probability. Let us now analyze UCCAb(Πv, B, k, `).

Pr[UCCAb(Πv, B, k, `) = b]
= Pr[UCCAb(Πv, B, k, `) = b|QUOTE] · Pr[QUOTE]

+ Pr[UCCAb(Πv, B, k, `) = b|QUOTE] Pr[QUOTE]
= Pr[UCCAb(Πv, B, k, `) = b|QUOTE] · p′(k)

+ 1/2 · (1− p′(k))
= (1− µ(k)) · p′(k) + 1/2 · (1− p′(k)) (5)

≥ 1/2 + p′(k)/4 (7)

≥ 1/2 + 1/4 · (1/p(k)− η(k)− µ(k)) (8)

Line 5 follows for a negligible function µ by the CPA

security of Π. In particular, B2 and thus the simulation

of A2 is statistically independent of α1−b. Therefore, the

only method for A2 to generate a decryption query that has

a α1−b quoted query occurs with negligible probability. A

formal argument appears in the full version.

Lines 7 follows for sufficiently large k. For line 8 we

know that A in experiment Expr3 will, with probability

at least 1/p(k) − η(k), for negligible function η, execute

without making any αb or β-quoted queries before making

an αb-quoted query in its ikth decryption oracle query. (Re-

call that {Expr3(P, A, k, ik)} ≈s Expr2(P, A, k, ik)} ≈s
{Expr1(P, A, k, ik)} and Pr[Expr1(P, A, k, ik) = 1] ≥
1/p(k).) By B’s perfect simulation of Expr3 until a quoted

query and the definition of p′(k) we see that p′(k) ≥

1/p(k) − η(k) − µ(k). But this breaks the UCCA security

of the scheme which proves the lemma.

Lemma 2. Let A be a CCA2KEM adversary for the scheme

P = (G,E,D) described. If A breaks P’s security, that is

for infinitely many k: Pr[CCA2KEM(P, A, k) = 1] ≥ 1/2+
1/poly(k), then for infinitely many k the adversary A must

make a successful β−quoted query in CCA2KEM(P, A, k)
with probability at least 1/poly′(k).

We prove the contrapositive. Suppose that for all suffi-

ciently large k the probability that A will ask a successful β-

quoted query in CCA2KEM(P, A, k) is less than µ1(k) for

some negligible function µ1. Let Pr[CCA2KEM(P, A, k) =
1] = v(k). We will show that v(k) ≤ 1/2 +µ2(k) for some

negligible function µ2, thus proving the security of P.

We modify A so that it never asks a successful β-

quoted query; in the event it were to attempt to ask a β-

quoted query, it immediately simulates getting the response

⊥. Call the modified version Â. It is easy to see that

{CCA2KEM(P, A, k)} ≈s {CCA2KEM(P, Â, k)}. We can

now use the previous lemma (1) to conclude that since A
makes no β-quoted queries, it makes no α-queries except

with negligible probability. This allows us to use UCCA2

decryption oracles to simulate the decryption oracle for A.

Therefore, we can now continue our proof in a manner

similar to that of Lemma 1. We consider a series of hybrid

experiments. The first simulates the CCA2KEM experiment.

Then we consider an experiment in which the encryption of

the challenge ciphertext uses a different key for the PRFG

providing random bits to the outer β-layer encryption and

for the generation of the KEMDEM key, then that which

is encrypted in the inner α-layer of the challenge cipher

(This is very similar the proof of Claim 1 in the proof

of Lemma 1). Next, we consider another modification of

the experiment where the PRFG is replaced with a truly

random function, as we did in Claim 2 in the proof of

Lemma 1). We then observe that since the two keys given

to the adversary in the modified CCA2KEM experiment are

random, the adversary cannot distinguish them. The proof

is given in the full version.

Theorem 4. If Π is a 1-bit CCA-secure scheme then

construction P is CCA2KEM-secure.

Proof: If Π is 1-bit secure, then by Thm. 2 and

Thm. 3, schemes Πv and ΠNM are respectively UCCA- and

1-NM-UCCA-secure.

Suppose that there exists an adversary A that can break

the CCA2KEM security of P. By Lemma 2, for infinitely

many k ∈ N, adversary A asks a successful β-quoted

query with non-negligible probability 1/p(k). Therefore,

there must be some ikth query, which is the first query

position for which A has a non-negligible chance of asking

a successful β-quoted query. Modify A so that any query



before ik which is a β-quoted query is answered with

⊥; this has no computationally observable effect on A’s

behavior, as any such query’s response should either have

been ⊥, or was an alternate reply but the latter can occur

with only negligible probability. We now claim that A can

be used to effectively break the 1-wise non-malleability of

ΠNM = (nmg, nme, nmd). First, we note that the modified

A makes no β-quoted queries before the ikth query, and so

by Lemma 1, except with negligible probability, it makes no

α-quoted queries before the ith query.

We now construct an adversary B for the 1-NM-UCCA

experiment (abbreviated as 1-NM for convenience) that runs

experiment CCA2KEM for A. The description of B is given

below. The adversary works on the premise that if A makes a

successful β-query in its ikth query, then the creation of the

ciphertext query violates the non-malleability property of the

inner encryption system ΠNM. This is because this adversary

B, when given an encryption α = nme(κ) simulates P
and A until the ikth query and finds a related encryption

α′ = nme(κ′) and indices s, t such that epk (αs;Fκ(s)) =
epk (α′t; Fκ′(t)), where αj denotes the jth bit of α.
• Adversary (B,D) for the 1-NM experiment

• BnmdNSK

1 (NPK, 1k)

(1) (pk , sk)← g(1k)
(2) Set PK ← (NPK, pk). Define SK = (NSK, sk)
(3) Execute (SA) ← ADSK

1 (PK , 1k). When A1

queries its oracle DSK , use the decryption oracle
nmdNSK along with the key sk to answer.

(4) κ0, κ1 ∈R {0, 1}k
(5) Output M0 = κ0, M1 = κ1 and state information

SB = (SA, sk ,PK ,M0,M1).

• B
bnmdNSKc
2 (NPK, c∗, SB)

(1) g, x ∈R {0, 1}
(2) K1−x ∈R {0, 1}k and Kx ← Fκg (0)
(3) Z ← Fκg (1)||Fκg (2)|| · · · ||Fκg (|c∗|)
(4) Compute C∗ ← evpk (c∗; Z).

(5) Simulate ADSK
2 (SA, (C

∗,K0,K1) until the ikth
decryption query. Denote this query as C′. Since
there are no α- or β-quoted queries (except with
negligible probability), answer queries to oracle
DSK by using the UCCA2 oracle bnmdNSKc and
sk .

(6) If C′ is not a β-quoted query output ⊥.
(7) Compute α′ ← dvsk (C′).
(8) Output ciphertext α′ and state information S =

(α′, pk , C′, g, κ1)

• The distinguisher D(x′ = κ′, S = (α′, pk , C′, g, κ1))
(1) Let Z′ ← Fκ′(1)||Fκ′(2)|| · · · ||Fκ′(|α′|)
(2) (Test for successfulness of β-query) If

evpk (α′;Z′) = C′, output g.
(3) Otherwise output 0.

Here we briefly sketch why B breaks the assumed 1-NM-

security of ΠNM and therefore completes the proof of our

main theorem.

To simplify our analysis, we condition the following

analysis on the event that α-quoted queries do not happen;

this event occurs with 1− µ(k) probability, for a negligible

function µ, and so affects our analysis by at most a negligible

amount. Thus, we now assume they do not happen. Let ik
be (non-uniform) advice specifying the index of the first

query for which there is a noticeable chance that A makes

a successful β-quoted query. Let b be the bit specified by

the 1-NMb experiment. With probability 1/2, adversary B
selects g = b (line 1), and so the ciphertext C∗ computed

in line 4 of B2 is a valid ciphertext for the P scheme. In

this case, B executes a perfect simulation of the CCA2KEM

experiment for adversary A, and by lemma 2, A makes a

successful β-quoted query in the experiment with probability

1/p(k). Thus, with probability 1/p(k), the query C ′ is a

successful β-quoted query.

Notice that in this case, the distinguisher D outputs

the bit b chosen in the 1-NMb experiment with noticeable

advantage. This follows because when C ′ is a successful

β-quoted query, as tested in line 6 of B2 and line 2 of

the distinguisher D, then D outputs g = b. Also, when A
does not ask a successful β query, then D outputs 0. For

convenience, we use 1-NMb to denote the random value

1-NMb(ΠNM, B,D, k). Let event Q denote a successful β-

quoted query. All together, we have

Pr[1-NM1 = 1 | g = 1] = Pr[Q] · 1 + Pr[Q] · 0 = 1/p(k)

Pr[1-NM0 = 1 | g = 0] ≤ Pr[Q] · 0 + Pr[Q] · 0 = 0

The concern is that when b 6= g, the advantage just

described that B has in the 1-NM experiment is lost.

This however, is not possible. When b 6= g, then the

ciphertext C∗ is an invalid ciphertext for the P scheme.

In particular, the ciphertext C∗ is comprised of the in-

ner encryption α = nme(κb) that has been encrypted to

the β ciphertexts using the randomness Fκg (1)|| . . .; i.e.

C ′ = evpko(α;Fκg
(1)|| . . .). In this case, query C ′ would

be a successful beta query with respect to C∗ only if

a portion of ciphertext C ′ is shared with the challenge

C∗, and C ′ decrypts correctly. We argue that on input

C∗ = evpko(α = nme(κb);Fκ1−b
(1)|| . . .), the query C ′

produced by A is a successful β query with negligible

probability. As a result, the distinguisher always outputs 0
in these cases and therefore we have the following claim

whose proof we defer.

Claim 3. Pr[1-NM0 = 1 | g = 1] = η(k), for some

negligible function η.

Given this claim, let us compute the final probabilities. We

have that

Pr[1-NM1 = 1]− Pr[1-NM0 = 1]
= Pr[g = 1] · Pr[1-NM1 = 1|g = 1]
− Pr[g = 1] · Pr[1-NM0 = 1|g = 1]
+ Pr[g = 0] · Pr[1-NM1 = 1|g = 0]
− Pr[g = 0] · Pr[1-NM0 = 1|g = 0]

≥ 1/2p(k)− η(k)/2



which violates the 1-wise NM security of the scheme ΠNM.
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