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Abstract
We construct a Non-Malleable Chosen Ciphertext Attack (NM-CCA1)

encryption scheme from any encryption scheme that is also plain-
text aware and weakly simulatable. We believe this is the first con-
struction of a NM-CCA1 scheme that follows strictly from encryption
schemes with seemingly weaker or incomparable security definitions
to NM-CCA1.

Previously, the statistical Plaintext Awareness #1 (PA1) notion was
only known to imply CCA1. Our result is therefore novel because un-
like the case of Chosen Plaintext Attack (CPA) and Chosen Chipher-
text Attack (CCA2), it is unknown whether a CCA1 scheme can be
transformed into an NM-CCA1 scheme. Additionally, we show both
the Damgård Elgamal Scheme (DEG) [6] and the Cramer-Shoup Lite
Scheme (CS-Lite) [5] are weakly simulatable under the DDH assump-
tion. Since both are known to be statistical Plaintext Aware 1 (PA1)
under the Diffie-Hellman Knowledge (DHK) assumption, they in-
stantiate our scheme securely.

Furthermore, in response to a question posed by Matsuda and
Matsuura [12], we define cNM-CCA1-security in which an NM-CCA1-
adversary is permitted to ask a c ≥ 1 number of parallel queries after
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receiving the challenge ciphertext. We extend our construction to
yield a cNM-CCA1 scheme for any constant c. All of our constructions
are black-box.

Keywords: Public-Key Encryption, Plaintext-Awareness, Non-Malleability.

1 Introduction

Public-key encryption is one of the most commonly used cryptographic
primitives in practice and theory. However, our community’s understand-
ing of its different security definitions and their relationships is still poor.
Goldwasser and Micali [11] formalized the notion of computational secu-
rity against passive eavesdroppers through the concept of semantic secu-
rity or chosen plaintext (CPA) security. However, security against passive
eavesdroppers is too weak to be used in modern applications, and thus
stronger notions of security have been proposed and studied.

Naor and Yung [15] introduced the first strengthening of security by
considering adversaries who have the ability to decrypt messages of their
choice. In their notion, called Chosen Ciphertext Attacks #1 (CCA1), the
adversary is not allowed to decrypt ciphertexts related to the ciphertext
of interest. Later, a more comprehensive notion of adversarial decryption
introduced by Simon and Rackoff [17] and termed CCA2 security became
the gold standard requirement for decryption on the Internet. While it is
clear that stronger security notions imply weaker ones, and thus CCA2-
secure schemes imply CCA1 secure ones which in turn imply CPA secure
ones, the converse directions are not known to be true. While it is the case
that a CPA (resp. CCA1) secure encryption scheme need not be CCA1

(resp. CCA2) secure, it is not known if the existence of a CPA (resp. CCA1)
secure scheme implies the existence of a CCA1 (resp. CCA2) scheme. These
are considered some of the major open questions in cryptography.

The CPA and CCA1 security notions for encryption suffer another
weakness which must also be addressed for public key encryption to
function in modern settings. In particular, the CPA and CCA1 security
definitions do not prevent an adversary who observes an encryption of
the message m from producing an encryption of the message f (m) for
some function f (even though the value m remains private). The semi-
nal work of Dolev, Dwork, and Naor [10] addressed this security issue by
introducing the notion of non-malleable cryptographic primitives such as
encryption schemes, commitment schemes, and zero-knowledge. Later,
Pass, shelat and Vaikuntanathan [16] strengthened the DDN definition
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and presented a construction from CPA to non-malleable CPA encryp-
tion using non-blackbox use of the CPA encryption scheme. There have
been many follow-up works that propose more efficient constructions of
non-malleable primitives. A notable achievement in this line of research
has been the construction of non-malleable CPA encryption from standard
versions of encryption in a black-box manner [3].

In general, any progress on constructing public-key encryption schemes
with stronger security properties from weaker ones is of great interest in
furthering our understanding of public key encryption. Beyond theoretical
importance, it is of practical value: when new cryptographic assumptions
are shown to be sufficient for public-key encryption, it would be valuable
to know that they are simultaneously sufficient for the strong forms we
need for use in modern settings.

With this in mind, we consider the open question of whether an NM-CCA1
encryption scheme can be constructed from a CCA1 encryption scheme.
We present a black-box construction of an NM-CCA1 encryption scheme
from a subset of CCA1 encryption schemes which are also plaintext aware
under multiple keys and weakly simulatable (we will formally define
these concepts later). Intuitively, an encryption scheme is plaintext aware
(called sPA1 in [1]) if the only way that a ppt adversary can produce a
valid ciphertext is to apply the (randomized) encryption algorithm to the
public-key and a message. Notice that this definition does not imply non-
malleability since there is no constraint on what an adversary can do when
given a valid ciphertext. In fact, both plaintext-aware encryption schemes
constructed in [1] are multiplicatively homomorphic, and thus clearly mal-
leable. The weakly simulatable property in our construction is required for
technical reasons and roughly corresponds to the ability to sample cipher-
texts and pseudo-ciphertexts without knowing any underlying plaintext
(if such a plaintext exists).

Note that there exist encryption schemes that satisfy security notions
that “sit between” standard notions. One such example from Cramer et
al. [4] consists of a black-box construction of a q-bounded CCA2 encryption
scheme which is not NM-CPA-secure1, but which satisfies a stronger secu-
rity notion than CPA. In particular, as a generalization of NM-CPA, Mat-
suda and Matsuura [12] put forth the challenge of constructing encryption
schemes that can handle more than one parallel query after revealing the
challenge ciphertext. They write:

1The [4] construction supports only q queries, whereas an NM-CPA adversary can sub-
mit more than q ciphertexts in its final parallel query.
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“Since any (unbounded) CCA secure PKE construction from
IND-CPA secure ones must first be secure against adversaries
who make two or more parallel decryption queries, we believe
that overcoming this barrier of two parallel queries is worth tack-
ling.”

In this spirit, we define an extension over NM-CCA1, cNM-CCA1, in
which the adversary can make c adaptive parallel decryption queries after
seeing the challenge ciphertext, where each parallel decryption query can
request that a polynomial number of ciphertexts (excluding the challenge
ciphertext) be decrypted. Thus that NM-CCA1 is cNM-CCA1 where the pa-
rameter c is set to be one. Next, we show how to construct a cNM-CCA1 se-
cure encryption scheme for an arbitrary constant c. Unfortunately, the size
of the ciphertext in our cNM-CCA1 encryption scheme is multiplicatively
polynomially bigger than the size of the ciphertext in a (c− 1)NM-CCA1
encryption scheme and thus c must be a constant to obtain an efficient
construction.

While our initial goal was to construct an NM-CCA1 scheme from a
subset of the CCA1-secure schemes, a result by Bellare and Palacio [1]
shows that any plain-text aware scheme that is CPA secure is also CCA1-
secure, and thus formally all of our results follow from any CPA-secure
that also has the necessary plaintext aware and simulatability properties.
However, we show that the weak simulatability requirement implies CPA
security, and therefore all of our results follow from any scheme which is
weakly simulatable and plaintext aware.

About Knowledge Extraction Assumptions Our constructions rely on
encryption schemes that are plaintext aware (sPA1`) in the multi-key setup
and are weakly simulatable. In Theorem 5, we show that such encryption
schemes exist under a suitable extension of the Diffie-Hellman Knowledge
(DHK) assumption that was originally proposed by Damgård, and modi-
fied to permit interactive extractors by Bellare and Palacio [1]. Dent [9] has
since shown that it is secure in the generic group model. Some critics of
the DHK assumption have commented on its strength and observed that
it is not efficiently falsifiable [14]. However, it is not our goal to argue
whether or not it is an assumption which should be used in deployable
systems. Instead we note it is seemingly a weaker assumption than the
Random Oracle model, which is known to be incorrect in full generality,
cf. [2] and is yet pervasively used in theory and practice. In contradis-
tinction, we are not aware of any general security definitions that are non-
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trivially weaker or incomparable to NM-CCA1 yet imply schemes which
are NM-CCA1. Similarly, the gap between NM-CCA1 and CCA2 is poorly
understood.

Techniques Both our NM-CCA1 and cNM-CCA1 constructions are based
on the ideas of the nested encryption construction by Myers and shelat
in [13]. We first encrypt the message under one key (we refer to this ci-
phertext as the inner layer), and encrypt the resulting inner layer ciphertext
repetitively under an additional k keys, where k is the security parameter
(we refer to these k keys as the “outer keys”, and the ciphertexts they
produce as the “outer layer”). During decryption, all the outer layer ci-
phertexts are decrypted, and it is verified that they all encode the same
inner layer value. This idea is combined with the well-studied notion of
non-duplicatable set selection (in this case of public-keys used to encrypt
the outer-layer encryptions), such that anyone attempting to maul a ci-
phertext has to perform their own independent outer layer encryption.
Intuitively, anyone that can encrypt to a consistent outer layer encryption
under a new key must have knowledge of the underlying inner-layer.

On a more technical level, there are several challenges that need to be
overcome. The technical difficulty in proving weaker public-key encryp-
tion security notions imply stronger security notions lies in the simulation
of a decryption oracle. When beginning with a sPA1`-secure encryption
primitive, we can easily simulate the first phase decryption oracle in the
NM-CCA1 security definition by using the plaintext extractor guaranteed
by the sPA1` security definition. However, we cannot simply use the ex-
tractor to simulate the decryption oracle after the adversary receives the
challenge ciphertext in the NM-CCA1 security experiment. This is because
the plaintext-aware security definition does not guarantee that an extrac-
tor works if the underlying randomness used to create the ciphertext by
the challenger is not known to the challenger. Generally, an adversary
that mauls an input ciphertext may not have access to this underlying ran-
domness. To overcome this problem, we make use of the notion of weak
simulatability.

Contributions To summarize, our contribution is twofold. Our work
shows the first black-box construction of a non-malleable CCA1 encryption
scheme in the standard model from a weaker encryption primitive. Sec-
ondly, for the first time, we show how to construct an encryption scheme
that is not CCA2 secure but is secure against an adversary that can ask a
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bounded number of polynomial-parallel queries after receiving the chal-
lenge ciphertext, satisfying a natural extension to the notion of NM-CCA1
security. This might be of independent interest since the development of
constructions that satisfy stronger notions than non-malleable CCA1 secu-
rity but do not satisfy CCA2 security can provide insight into the technical
difficulties with understanding the relationship between CCA1 and CCA2.
For example, prior to this work the authors did not believe it was clear that
such schemes existed. At least one of the authors felt it was plausible that
being able to provide multiple parallel queries after access to a challenge
ciphertext was equivalent to providing an arbitrary polynomial number of
parallel queries.

Finally, we note that none of our constructions

2 Notations and Definitions

We use [n] to denote the set {1, 2, · · · , n}. We say a function µ : N → R

is negligible if for all polynomials p and all sufficiently large n : µ(n) ≤
1/p(n). Given two families of distributions D0 = {D0,i}i∈N and D1 =
{D1,i}i∈N, we denote that they are computationally indistinguishable by
writing D0 ≈c D1.

We use the standard definition for CPA/CCA1/CCA2 security, and a
definition of non-malleability for CCA1 encryption schemes based on the
non-malleability definition for CPA encryption schemes in [16]. In the
NM-CCA1 game, the adversary is allowed to ask an unbounded number
of decryption queries before seeing the challenge ciphertext, and one par-
allel query afterwards. A parallel decryption query is one that consists of
unbounded number of ciphertexts, none of which will be decrypted until
all the ciphertexts in the query are submitted.

To generalize NM-CCA1 security, we can define cNM-CCA1 security
identically to NM-CCA1 except that the adversary can make c ≥ 1 parallel
queries after seeing the challenge ciphertext. For example, in the CCA2 se-
curity definition, the adversary may ask an unbounded number of queries
before and after seeing the challenge ciphertext; thus, cNM-CCA1 is an
intermediate notion that we study to understand public key encryption.

Definition 1 (cNM-CCA1). For an integer c ≥ 0, we say that a scheme Π =
(nmg, nme, nmd) is cNM-CCA1 or (c)NME secure if for all ppt adversaries and
distinguishers A = (A0, ...,Ac) and D respectively and for all polynomials p, we
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have that{
(c)NME0(Π

(c),A,D, k, p(k))
}

k
≈c

{
(c)NME1(Π

(c),A,D, k, p(k))
}

k

where experiment (c)NME is defined in Fig. 1.

(c)NMEb(Π,A,D, k, p(k))
1: (cnpk, cnsk)← nmg(1k)

2: (m0, m1, S1)← Anmd(cnsk,.)
0 (cnpk) s.t. |m0| = |m1|

3: y∗ ← nme(cnpk, mb)

4: ~d1 ← ⊥
5: for i = 1 to c
6: (~y, Si+1) ← Ai(y∗, Si, ~di) where |~y| = p(k) a: why do we

need the p(k) here?
7: ∀j ∈ [|~y|], di+1,j ← nmd(cnsk, yj) if yj 6=

y∗ and ⊥ otherwise
8: Output D(y, ~dc+1, Sc+1)

Fig. 1: The (c)NME Experiment For c ≥ 0 . An Adversary A gets c
parallel queries to a decryption oracle.

2.1 Weakly Simulatable Encryption Scheme

Dent [8] introduced the notion of simulatability for an encryption scheme.
Intuitively, an encryption scheme is simulatable if no attacker can distin-
guish valid ciphertexts from some family of pseudo-ciphertexts (which
will include both valid encryptions and invalid encryptions). This fam-
ily of pseudo-ciphertexts must be efficiently and publicly sampleable and
somewhat invertible (given any pseudo-ciphertext, one can find a ran-
dom looking string that generates it). In Dent’s definition, a distinguisher
is given a challenge “ciphertext” (i.e., either a legitimate ciphertext or a
pseudo-ciphertext) and must classify it. The distinguisher has access to a
decryption oracle to help it distinguish between pseudo-ciphertexts and
legitimate ones, but it cannot query the oracle on the challenges that it is
trying to distinguish. We introduce a weak notion of simulatability where
the attacker is not given access to the decryption oracle.

Definition 2. (Weakly Simulatable Encryption Scheme) An asymmetric en-
cryption scheme Π = (gen, enc, dec) is weakly simulatable if there exist two
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poly-time algorithms ( f , f−1), where f is deterministic and f−1 is probabilistic,
such that for all k ∈ N there exists the polynomial function p where l = p(k),
and the following correctness properties hold for every pk in the range of gen:

1. For each r ∈ {0, 1}l , assign c← f (pk, r) where c ∈ C. The set C is the set
of all “possible-ciphertext” strings that can be submitted to the decryption
oracle (notice that members of C are both valid and invalid ciphertexts).

2. For each c ∈ C, f−1(pk, c) ∈ {0, 1}l .

3. For each c ∈ C, f (pk, f−1(pk, c)) = c.

4. For every efficient distinguisher A and all k, |Pr[DISTΠ(( f , f−1), k,A) =
1]− 1/2| ≤ µ(k), where µ is some negligible function and the DIST ex-
periment is defined as follows:

DISTΠ(k, ( f , f−1),A)
1: (pk, sk)← gen(1k)
2: (m, σ)← A(pk), where σ is state.
3: b← {0, 1}, r ← {0, 1}l , c← encpk(m)
4: if b = 0, then p = (r, f (pk, r))
5: else p = ( f−1(pk, c), c).
6: b′ ← A(σ, p).
7: Output 1 if b = b′.

When valid ciphertexts cannot be distinguished from pseudo-ciphertexts
that need not encode messages, CPA security is immediate. The converse
need not hold because ciphertexts might be hard to generate and invalid
ciphertexts might be easily distinguishable from illegitimate ones (for ex-
ample, they might contain a zero-knowledge proof of validity). Notice that
the weak simulatability notion is not equivalent to the Invertible Sampling
notion introduced in [7] since in this definition the plaintext is not needed
to compute the pseudo-random string that generates the ciphertext.

Theorem 1. If E is a weakly simulatable encryption scheme, then E is CPA
secure.

Proof. Let E be weakly simulatable using the efficiently computable func-
tions ( f , f−1). Let A = (A1,A2) be a CPA adversary, that breaks the CPA
security of E with advantage ε. We will show that if E is a weakly simu-
latable encryption scheme, then ε should be negligible.

In Fig. 2 we present a distinguisher BA = (BA,1,BA,2) that employs A
internally and tries to break E’s weak simulatability property. We analyze
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BA,1(pk)
1: (m0, m1, σ)← A1(pk)
2: d← {0, 1}
3: Output(md, σ′ = (σ, d))

BA,2(σ
′ = (σ, d), (r, c))

1: d′ ← A2(σ, c)
2: If d = d′ output 0, otherwise output 1

Fig. 2: The distinguisher BA used in the DIST experiment to break

the weak simulatable security of E.

the advantage of BA assuming A has advantage ε in breaking the CPA
security of E.
Assuming that A has advance ε in breaking the CPA security of E implies
that:

Pr
DISTE(k,( f , f−1),BA)

[d′ = d | b = 0] > 1/2 + ε(k) (1)

Notice that Pr[d′ = d|b = 0] is the probability thatA guesses the encrypted
message correctly when it is given a valid ciphertext. Also E is weakly
simulatable if and only if for some negligible function ε′

|Pr[b′ = 0|b = 0]− Pr[b′ = 0|b = 1]| < ε′(k) (2)

Note that by definition in DISTE(k, ( f , f−1),BA), b′ = 0 if and only if
d′ = d. Hence Pr[b′ = 0|b = 0] = Pr[d = d′|b = 0] and Pr[b′ = 0|b = 1] =
Pr[d = d′|b = 1]. We have that

Pr[d = d′ | b = 1] = 1/2 (3)

because whenever b = 1, the ciphertext c to the distinguisher BA,2 is in-
dependent of the bit d, and the distinguisher’s probability guessing the
random bit d is exactly 1/2. We have that:

|Pr[b′ = 0|b = 0]− Pr[b′ = 0|b = 1]| = |Pr[d = d′|b = 0]− Pr[d = d′|b = 1]
> 1/2 + ε− 1/2 = ε

(4)
where the inequality follows from substituting the (in)equalities 1 & 3

respectively. We combine the inequalities 2 and 4:

ε < |Pr[b′ = 0|b = 0]− Pr[b′ = 0|b = 1]| < ε′(k)
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→ ε < ε′(k)

Since ε is at most a negligible value in the security parameter, we con-
clude thatA has at most negligible advantage in breaking the CPA security
of E. Hence E is CPA secure.

Instantiating weak-simulatability Following the ideas of Dent [8], we
show in Appendix A how the Damgård ElGamal (DEG) and CS-lite en-
cryption schemes—summarized in Fig. 8 for convenience—can both be
weakly simulatable when instantiated in the proper groups.

2.2 Plaintext Awareness For Multiple Key Setup

In Fig. 3 we present a slight generalization to the definition of sPA1 by [1]
in which multiple keys are given to the ciphertext creator and the extractor
must be able to decrypt relative to any one of them.

sPA1`(Π = (gen, enc, dec),Crt,Ext, k)
1: Let R[Crt], R[Ext] be randomly chosen bit strings for Crt

and Ext
2: ((pki, ski))i∈[`(k)] ← gen(1k)

3: st←
(
(pki)i∈[`(k)], R[Crt]

)
4: CrtExt(st,.)

(
(pki)i∈[`(k)]

)
5: Let Q = {(qi = (pk ji , ci), mi)} be the set of queries and

responses made to Ext.
6: Return ∧|Q|i=1(mi = decskji

(ci)) (Note a = b is a boolean)

Fig. 3: The sPA1` Definition

Definition 3 (sPA1`-Security). A public-key encryption scheme Π = (gen, enc, dec)
is said to be sPA1` secure, for a polynomial `, if for each ppt ciphertext creator
Crt, there exists a ppt extractor Ext and negligible function µ s.t. for all k ∈ N:
Pr[sPA1`(Π,Crt,Ext, k) = 0] ≤ µ(k), in which case the Ext is deemed success-
ful for Crt. We define AdvsPA1`(E,Crt,Ext, k) to be Pr[sPA1`(E,Crt,Ext, k) =
0].
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Notice that the sPA1 definition is a special case of sPA1` where `(k) =
1. In Fig. 3, Crt is a ciphertext creator. Ext is a stateful ppt algorithm called
the extractor that takes as input its state information st and a ciphertext
given by the ciphertext creator Crt. Ext will return the decryption of that
ciphertext and an updated state st. Ext’s initial state is set to the public-
keys pki and Crt’s random coins R[Crt]. The state gets updated by Ext as it
answers each decryption query that Crt submits.

In Appendix B, we argue that Cramer-Shoup Lite (CS-Lite) and Damgard’s
ElGammal (DEG), described in Fig. 8, are sPA1` secure based on a suitable
modification of the Diffie-Hellman Knowledge definition that was origi-
nally proposed by Damgård, and then later modified to permit interactive
extractors by Bellare and Palacio [1].

2.3 Why sPA1` does not follow from sPA1 security

It may seem that the sPA1` definition should follow naturally from sPA1
by composing extractors. The following toy example highlights the tech-
nical difficulty with natural composition. Let (g, e, d) be an sPA1-secure
primitive, and define a new encryption scheme (g′, e′, d′) which creates
two pairs of keys from the original encryption scheme, and chooses one
(at random) to use to encrypt during the encryption process. Formally,
g′(k) = (PK = (pk0, pk1), SK = (sk0, sk1)), where (pkb, skb) are an out-
put of the bth invocation of g(k). For encryption, e′(PK, m) chooses a
random coin z ∈ {0, 1} and outputs C = (z, e(pkz, m)); decryption is
d′(SK, C = (z, c)) outputs d(skz, c). One would expect that the resulting
scheme is sPA1 secure, but it is not clear that it is. In particular, one would
think that for any ciphertext creator for the modified scheme, one could
just use two extractors for the original scheme (one for each public-key)
to simulate an extractor for the creator. However, this argument does not
work, and we are not aware of any other methods for proving the equiva-
lence. One issue is that if a creator switches between making encryptions
under pkb and pk1−b, then at each switch we must incorporate the extractor
in to the original ciphertext creator in order to construct a new extractor.
The extractors must be continuously incorporated, because definitionally
they have no ability to extract encryptions when the ciphertext creator has
access to a decryption oracle other than the one simulated by the extractor.

More specifically, consider a ciphertext creator Crt = (Crt0,Crt1, ..,Crtn)
for the scheme (g′, e′, d′) where Crti denotes the execution after the ith
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query.2 Let Crt switch between the public-key used to encrypt messages
for each query, i.e. it encrypts its even queries with pk0 and its odd queries
with pk1. To make an extractor for Crt (without including the oracles in the
definition, as we have done), we would first create Crt′0 using the standard
sPA1 definition and the extractor for pk0 that is guaranteed to exist for Crt0,
call it Ext0, by embedding the extractor as a subroutine into Crt0. The run-
ning time of Crt′0 is clearly the additive combination of the running time of
Ext0 and Crt0. One would then compose Crt′0 with Crt1 and use the sPA1
definition to construct an extractor for Crt1 ◦ Crt′0, called Ext1, which only
queries decryptions for pk1. We could continue this inductively, but after
a super-constant number of iterations, the running time of the resulting
extractor would be super-polynomial.

Finally, we note that common additional definitional traits, like the no-
tion of a history of computation, do not port readily to these extractability
definitions. In essence, one needs to consider the possibility that a history
string encodes a Turing Machine, which is then run by an extractor acting
as a Universal Turing machine. The semantic effect of such a notion in
the definition is to swap the order of quantifiers relating to the extractor,
further strengthening the definition.

2.4 A Note On PA1+

Dent [8] also investigated an augmented notion of plaintext awareness
called PA1

+ in which he provides the ciphertext creator access to an oracle
that produces random bits. The extractor receives the answers to any
queries generated by the creator, but only at the time these queries are
issued. The point of this oracle in the context of a plaintext awareness
definition is to model the fact that the extractor might not receive all of the
random coins used by the creator at the beginning of the experiment. Much
in the spirit of “adaptive soundness” and “adaptive zero-knowledge”, this
oracle requires the extractor to work even when it receives the random
coins at the same time as the ciphertext creator. Therefore, the extractor
potentially needs to be able to extract some ciphertexts independent of
future randomness. This modification has implications when the notion
of plaintext awareness is computational—as in the case of Dent’s work.
However, in the case of statistical plaintext awareness, we argue that sPA1`
security also implies sPA1+` security.

2We can assume the Crti outputs its state, which is then used as auxiliary information
and passed as input to Crti+1.
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Definition 4. Define the sPA1+` experiment in a similar way to the sPA1` ex-
periment. The only difference between the two is that during the sPA1+` experi-
ment, the ciphertext creator has access to a random oracle O that takes no input,
but returns independent uniform random strings upon each access. Any time the
creator access the oracle, the oracle’s response is forwarded to both the creator and
extractor.

If an encryption scheme would be deemed sPA1` secure, when we replace the
sPA1` experiment in the definition with the modified sPA1+` experiment, then the
encryption scheme is said to be sPA1+` secure.

Lemma 1. If an encryption scheme Π is sPA1` secure, then it is sPA1+` secure.

Proof. Notice that the only difference between sPA1 and sPA1+ security
definitions is that the latter makes use of an oracle O that returns random
bits upon access that is not known in advance to either the adversary or
the extractor. If the adversary Crt+ does not access O during its execu-
tion then sPA1+ security holds since i) with no access to O, sPA1+ and
sPA1 security are equivalent, ii) sPA1 security holds (i.e. for any given
adversary, there exists an extractor that can decrypt the queries correctly).
Hence in what follows we only argue that sPA1+ security holds if the
adversary accesses the oracle O at least once.

Let Crt+ be an sPA1+ adversary. The intuition for this argument is
that the answers that the Crt+ receives from O can be interpreted as “the
end of the random tape” for some sPA1 adversary Crt. In other words,
Crt runs Crt+ internally and answers the queries to O by reading the end
portion of its random tape. By properly formalizing this to handle poly-
nomially many queries to O, it is easy to see that Crt will make the same
distribution of queries to its extractor that Crt+ makes to its own extractor
Ext+. By sPA1-security, there exists an Ext that works for the queries that
Crt produces.

This observation provides a plausible model for how Ext+ could work:
it begins by sampling a random tape R+ ← (R|r′1| · · · |r′n) for Crt (i.e., with
randomly sampled answers ri to O queries at the end of the tape). When it
is asked queries to decrypt, it simply runs Ext (which must work properly)
using this random tape. At some point, the first oracle query to O will be
made and thus Ext+ will receive a random string r1 as the first oracle O
query answer. At this point, Ext+ updates the tape R+ ← (R|r1|r′2| · · · |r′n)
with the correct answer, restarts its execution of Ext on this new tape by
feeding it all of the same decryption queries that have been received up
until this point. This results in a new state for the extractor that will
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be used to answer future decryption queries. The remaining decryption
queries and queries to O will be handled similarly.

One can observe that if ` queries to O are made, then Ext+ must restart
the execution of Ext ` times, and thus its running time will be a summation
of ` running times of Ext. This summation will still be polynomial in the
security parameter. Moreover, if Ext+ fails to answer a decryption query
properly, then it serves as a polynomial-time procedure that—by running
Ext at most ` times—is able to produce a set of queries that breaks sPA1-
security. In what follows, we present a more formal argument that shows
how an sPA1+-adversary Crt+ that succeeds in causing every Ext+ to fail
can be used, using the ideas above, to produce an sPA1-adversary Crt that
violates sPA1-security.

Assume that the Crt+ makes polynomially many queries using its ran-
dom tape R, then accesses O once (and gets in return some random coins
r1) and asks one more query q that Ext+ fails to decrypt correctly. Assume
that (R|r1) is ` bits. We build an adversary Crt that simulates Crt+ using
the first ` bits of its random tape. Crt reads the first ` bits of its random
tape, parses it as (R|r1) (call the rest of its random tape r′2|r′3| . . . |r′n) and
simulates Crt+ on random coins R. Crt submits Crt+’s queries to its ex-
tractor and forwards back the answer to Crt+. When Crt+ calls O, Crt
returns the r1 portion of its tape. Then it continues running Crt+ until it
gets its next decryption query q, submits this query to its extractor, and
halts. Notice the distribution of queries that Crt asks to its extractor is the
same as Crt+. Also, Crt does a perfect simulation of the sPA1+ game for
Crt+, so the query q is also distributed identically. Since Π is sPA1 secure,
there must be some extractor Ext such that Pr[sPA1(Π,Crt,Ext, k) = 0] is
negligible when Ext is run on input tape (R|r1|r′2|r′3| . . . |r′n) as the random
coins for Crt. Thus, the probability that Ext answers the query q correctly
must be 1− ε(k) for some negligible function ε. However, notice that Ext+

also answers q by running Ext on (R|r1|r′2|r′3| . . . |r′n) and hence returns the
same correct decryption of q to Crt+. This contradicts our assumption that
Ext+ decrypt q incorrectly. Similar argument can be made about any other
query that Crt+ makes to show that Ext+ returns the right decryption for
that query. Hence we conclude that Ext+ always returns the right answer
to all of the Crt+’s queries.
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3 More Than Non-Malleable CCA1 Encryption Scheme

We show how to construct an encryption scheme that is cNM-CCA1 secure
where c is a constant. The high level idea for constructing a cNM-CCA1
scheme is to add c− 1 layers of encryption atop the basic encryption of a
message m, effectively redundantly re-encrypting the previous layer’s ci-
phertext and forming a new layer of encryptions. Intuitively, each parallel
query that the adversary asks can help it peel back the security of one of
the layers of encryption in the challenge ciphertext, and therefore if a chal-
lenge ciphertext is composed of c layers, then the scheme can withstand c
parallel queries.

3.1 The Construction

For the base case, we define NMGen(0) = gen; NMEnc†(0)(pk, m,SigVK) =
enc(pk, m); and NMDec†(0)(sk, c,SigVK) = dec(sk, c) where the weakly sim-
ulatable and sPA1` secure encryption primitive E = (gen, enc, dec) is the
starting point for our work. Next, we recursively perform multiple re-
dundant parallel encryptions of the last recursive steps output. In each
of these steps, we use the standard practice of interpreting the bits of
a freshly generated verification key for a one-time signature scheme to
choose appropriate public keys with which to encrypt. The resulting set
of ciphertexts is finally signed with the one-time signature’s signing key to
form the final encryption. Decryption proceeds as one might expect: first
the signature is checked for validity, and next the encryption is recursively
decrypted, where at each level it is ensured that the redundant parallel
decryptions all encode the same underlying “message”. The encryption
scheme Π(c) parameterized by an integer c > 0 appears in Fig. 4.

3.2 Preliminary Notion

Before we present our security proof, we introduce an intermediate “tagged
encryption” security game to simplify our proof. We call this notion
(c)NME∗ security and it allows each ciphertext to have an associated tag
used during both encryption and decryption. The challenge ciphertext is
tagged with the vector~0, and the adversary can submit any query with a
non-zero tag.
Along with this new definition, we present a natural analog of our original
encryption scheme Π∗(c) in Fig. 6. The difference is that the signature
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NMGen(c)(1k)

1: (npk
(c−1), nsk

(c−1))← NMGen(c−1)(1k)

2: ∀i ∈ [k] and b ∈ {0, 1}, (pkb
i , skb

i ) ← gen(1k) s.t. pkb
i encrypts

the range of NMEnc†(c−1)

3: Output npk
(c) = {npk

(c−1), {pkb
i } i∈[k]

b∈{0,1}
} and nsk

(c) =

{nsk
(c−1), {skb

i } i∈[k]
b∈{0,1}

}

NMEnc(c)(npk
(c), m)

1: (SigSK, SigVK)← GenKey(1k)
2: c← NMEnc†(c)(npk

(c), m, SigVK)
3: σ← SignSigSK(c)
4: Output C = (c,SigVK, σ)

NMEnc†(c)(npk
(c), m, SigVK)

1: Parse npk
(c) into (npk

(c−1), ~pk = {pkb
1, . . . , pkb

k}b∈{0,1})
2: Let SigVKi be the ith bit of SigVK.
3: c′′0 ← NMEnc†(c−1)(npk

(c−1), m,SigVK)
4: c′i ← enc

pk
SigVKi
i

(c′′0 ); ∀i ∈ [k]

5: Output c = ~c′

NMDec(c)(nsk
(c), C)

1: Parse C as (c,SigVK, σ) and let SigVKi be the ith bit of SigVK.
2: if VerifySigVK(σ,~c) = 0 then Output ⊥
3: Output NMDec†(c)(nsk

(c), c, SigVK)

NMDec†(c)(nsk
(c), c,SigVK)

1: Parse nsk
(c) into (nsk

(c−1), ~sk = {skb
1, . . . , skb

k}b∈{0,1})
2: ∀i ∈ [k], compute c′i ← dec

sk
SigVKi
i

(ci)

3: if ∃i ∈ [k] s.t. c′1 6= c′i then Output ⊥
4: Output NMDec†(c−1)(nsk

(c−1), c′1, SigVK)

Fig. 4: The cNM-CCA1 Encryption Scheme Π(c)

scheme used for unduplicatable set selection is replaced by the k-bit tag α.
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(c)NMEb
∗(Π∗,A,D, k, p(k))

1: (npk, cnsk)← NMGen∗(1k)

2: (m0, m1, S1)← ANMDec∗(nsk,.)
0 (cnpk) s.t. |m0| = |m1|

The oracle NMDec∗(nsk, Y = (y, α)) returns ⊥ if α = 0k

3: Y∗ ← NMEnc∗(npk, mb, α = 0k)

4: ~d1 ← (⊥)
5: for i = 1 to c
6: (~Y, Si+1)← Ai(Y∗, Si, ~di) where |~Y| = p(k)
7: If α 6= 0k, di+1,j ← NMDec∗(nsk, Yj = (yj, α))

8: Else di+1,j ← ⊥; ∀j ∈ [|~Y|]
9: Output D(Y∗, ~dc+1, Sc+1)

Fig. 5: The (c)NME∗ Experiment For c ≥ 0

NMGen∗(c)(1k)
1: Defined as NMGen(c)(1k) in Fig. 4

NMEnc∗(c)(npk
(c), m, α ∈ {0, 1}k)

2: Return (NMEnc†(c)(npk
(c), m, α), α) where NMEnc†(c) is de-

fined in Fig. 4,
NMDec∗(c)(nsk

(c), Y = (y, α ∈ {0, 1}k))

3: Defined as NMDec†(c)(nsk
(c), y, α) in Fig. 4

Fig. 6: The Encryption Scheme Π∗(c) = (NMGen
∗(c), NMEnc

∗(c),
NMDec

∗(c))

As the next lemma shows, there is no difference between these security
games; for every adversary in the tagged security game, there exists an
equivalently succesful adversary for the (c)NME game.

Lemma 2. For any ppt adversary A, integer c > 0, polynomial p and security
parameter k, there exists an adversary B s.t.{

(c)NMEb(Π
(c),A,D, k, p(k))

}
k
≡
{
(c)NMEb

∗(Π∗(c),B,D, k, p(k))
}

k

Proof. We build a (c)NME∗ adversary B that interacts with the (c)NME∗

experiment by simulating the (c)NME experiment for A. B receives pk
as in Line 2 of the experiment (Fig. 5) and proceeds to generate a pair
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of signature keys (skSig∗, vkSig∗) ← GenKey(1k). B then sets pk′ ←
ReArrange(pk, vkSig∗) where the function ReArrange is presented in Fig. 7.
Intuitively this function rearranges the keys in pk and pk′ so that B can sign
a challenge ciphertext that it will eventually receive using skSig∗ and then
produce an encryption according to the Π(c) scheme using only the keys
in pk. B runs A0 on pk′.

ReArrange(pk, vkSig∗)
1: Parse pk as

(
pk0, {pkb

i }i∈[c·k],b∈{0,1}

)
2: for i ∈ [0..c− 1]
3: for j ∈ [k]
4: if vkSig∗j = 1 then swap the values pk0

i·k+j and pk1
i·k+j

5: endFor
6: endFor
7: Return pk =

(
pk0, {pkb

i }i∈[0...ck],b∈{0,1}

)
Fig. 7: The Definition for the ReArrange Function

Whenever A0 asks a query Y = (~y, σ, vkSig), B does the followings:
B returns ⊥ to A0 as the answer to the query if either vkSig = vkSig∗ or
VerifyvkSig(σ,~y) = 0. Otherwise B sets α ← ⊕

(vkSig∗, vkSig) where
⊕

is
the bitwise XOR function on two vectors of the same length. Intuitively,
this finds the right α that shows under which subset of pk keys the vector
~y is encrypted.
B then asks (~y, α) to its oracle and forwards the answer to its simulation

of A0. Eventually A0 returns (m0, m1, S1) and halts. B outputs (m0, m1) to
the environment (i.e., its experiment) and receives a challenge ciphertext
(~y∗, 0k). B computes σ∗ ← SignskSig(~y∗), sets Y∗ ← (~y∗, σ∗, vkSig∗), sets
~d1 ← ⊥ and does the following for all q = 1 to c:

B simulates Aq on the input (Y∗, Sq, ~dq) and receives in return a vec-
tor of ciphertexts ~Y and the state information Sq+1. B computes the
decryption to each of Yi’s in the same way that it computed the de-
cryption to the CCA1 queries with the difference that it asks all of
the queries in the same parallel query at once from the environment
(instead of asking sequentially). Call the vector of decryption of the
queries ~dq+1.

Eventually B outputs ~dc+1 and Sc+1 and halts.
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3.3 Main Theorem

The heart of our main theorem relies on Lemma 3 (introduced shortly)
which, informally, shows that for any ppt adversary A, there exists a ppt
adversary B such that{
(c)NMEb

∗(Π∗(c),A,D, k, p(k))
}

b,k
≈c

{
(c-1)NMEb

∗(Π∗(c−1),B,D, k, p(k))
}

b,k
.

Assuming Lemma 3, we state and give the proof our main theorem below.
We then formally state and prove Lemma 3.

Theorem 2. If the encryption scheme E = (gen, enc, dec) is weakly simulatable
and sPA1` secure, then for any integer c > 0, construction Π(c) = (NMGen(c), NMEnc(c), NMDec(c))
in Fig. 4 is (c)NME secure.

Proof. By applying Lemma 3 c times, we have that{
(c)NME0

∗(Π∗(c),A,D, k, p(k))
}

k

Lemma 3

≈c · · · ≈c

{
(0)NME0

∗(Π∗(0),B,D, k, p(k))
}

k

In Claim 1 (below), we show that construction Π∗(0) is (0)NME∗-secure,
and thus it follows that{

(c)NME0
∗(Π∗(c),A,D, k, p(k))

}
k
≈c

{
(0)NME1

∗(Π∗(0),B,D, k, p(k))
}

k

Applying Lemma 3 again on the right hand side, , it follows that{
(c)NME0

∗(Π∗(c),A,D, k, p(k))
}

k
≈c

{
(c)NME1

∗(Π∗(c),A,D, k, p(k))
}

k

Finally applying Lemma 2 to show equivalence between (c)NME and (c)NME∗

completes the theorem.

Claim 1. If the encryption scheme E = (gen, enc, dec) is weakly simulatable and
sPA1` secure, then for all ppt adversaries and distinguishersA andD respectively
and for all polynomials p:{

(0)NME0
∗(Π∗(0),A,D, k, p(k))

}
k
≈c

{
(0)NME1

∗(Π∗(0),A,D, k, p(k))
}

k

where the experiment (0)NME∗ is defined in Fig. 5 and the encryption scheme
Π∗(0) = (NMGen∗(0), NMEnc∗(0), NMDec∗(0)) is defined in Fig. 6.
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Proof. By definition, notice that NMEnc∗(0) = NMEnc†(0)(pk, m, α) = enc(pk, m);
in fact, Π∗(0) is equivalent to E. Second, the (0)NME∗ experiment has no
parallel queries after the challenge has been submitted, and is therefore
(roughly) equivalent to the CCA1-security game. By assumption, E is
sPA1`-secure and therefore CCA1-secure, which completes the claim.

It remains to prove the key technical lemma; we first present a high-
level overview of the proof. Our goal is to show how to simulate an Ad-
versary A that makes c parallel decryption queries when given a c-layered
challenge ciphertext, with an adversary B that only has access to c− 1 par-
allel decryption queries, and a c− 1 layered challenge ciphertext. It is easy
to see how we can simulate the extra layer of the challenge ciphertext, B
can simply generate its own keys and add an extra layer to its challenge
ciphertext to simulate A. The question remains how to simulate the extra
parallel decryption that A has access to. It may seem, on first glance, to
follow immediately for the sPA1` security of the underlying encryption
scheme, because the whole purpose of an extractor is to simulate a de-
cryption oracle. However, A is fed a challenge ciphertext which it did not
produce (and thus there is no extraction guarantee), and A might create
its parallel decryption queries based on the challenge ciphertext, in which
case there is no a priori reason to believe that ExtA will be able to “de-
crypt” properly when used to decrypt the “extra” cth parallel decryption
query.

To solve this issue, we use the non-duplicatable set selection to ensure
that there is a new public-key with respect to which the adversary must
have generated part of the ciphertext (and not just mauled part of the
challenge ciphertext); we can then be assured that the extractor will work
on this portion of the challenge ciphertext. However, this by itself does
not allow us to simulate the consistency check in the decryption algorithm
that ensures that all of the encryptions at a given level are of the same
message. For the outer layer of ciphertexts that need to be decrypted, we
have the corresponding secret-keys since B generated the corresponding
public-keys. The inner-layers are another matter entirely. In order to argue
this, we use the sPA1`+ security of the underlying encryption scheme in
conjunction with the fact that it is weakly simulatable. In essence this
means that the extractor cannot tell the difference between when the outer
layer of the challenge ciphertext is legitimate encryptions and when they
were instead created on demand using the simulator with randomness
provided via an oracle. However, in the latter case, by the definition of
sPA1`+ security, the extractor must function.
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There is one last subtlety, which is that due to technical requirements of
the proof, we actually do not necessarily have access to the secret-keys for
the outer layer of the encryptions of A when we need it, and therefore can-
not perform the outer layer consistency check via the extractor. It suffices
for this check to be done in a hybrid experiment using the actual secret-
key (independent of where it comes from). However, we need to ensure
that the responses from these consistency checks do not affect the viability
of finding a suitable extractor. Here, the fact that we have p(k) parallel de-
cryption queries to simulate, as opposed to p(k) adaptive queries, is used.
Essentially, we consider a system which decrypts all of the parallel queries
via the extractor, ignoring the initial consistency checks.

Lemma 3. For any integer c > 0, any ppt adversary A, polynomial p and
security parameter k, there exists a ppt adversary B such that{
(c)NMEb

∗(Π∗(c),A,D, k, p(k))
}

b,k
≈c

{
(c-1)NMEb

∗(Π∗(c−1),B,D, k, p(k))
}

b,k

Proof. Consider the following hybrid experiment:
Experiment Hb

∗(Π∗(c),A,D, k, p(k)) proceeds similarly to (c)NMEb
∗ with

the difference that the former experiment handles the decryption of all
ciphertexts up to the second parallel query differently. After all of the
public keys have been generated, initialize st←

(
{pki}i∈[2ck+1], RA

)
where

RA are the random coins that will be used to run A. For all CCA1 queries
that A makes (i.e., queries that are made before the challenge ciphertext
is produced), everytime that NMDec∗ calls the decryption function dec on
yi, the experiment calls ExtA(st, yi, ·) with the appropriate pk as the third
argument. After A receives the challenge ciphertext, the first parallel
query {di} is decrypted using NMDecAlt defined below (without loss of
generality, assume that di = (~C, σ, vkSig)). The remaining (c− 1) parallel
queries are decrypted as per (c)NME∗.

NMDecAlt(di = (~C, α)):
1: If α = 0k output ⊥, else let i′ be the first index at which αi′ 6= 0.
2: For i ∈ [k], do C′i ← decsk

αi
i
(Ci)

3: Call Y(c−1) ← ExtA(st, Ci′ , pkαi′
i′ )

(notice that Y(c−1) = (y(c−1)
1 , . . . , y(c−1)

k ) is a vector).
4: m← ExtractAll(pk, Y(c−1), (c− 1), α)
5: If ∃j s.t. C′1 6= C′j, return ⊥. Else return m

ExtractAll(pk, Y = (yc
1, . . . , yc

k), c, α) :
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1: for i = c− 1 to 0
2: for j = 1 to k
3: yi

j ← ExtA(st, y(i+1)
j , pk

αj

(i+1)·k+j)

4: if ∃d ∈ [k] s.t. yi
1 6= yi

d return ⊥
5: m← ExtA(st, y0

1, pk0)
6: Return m

Intuitively ExtractAll submits the inner layer of the query Y(c−1) to
the extractor to be decrypted under the appropriate keys until it
reaches the innermost layer containing message m.

To define the function extractor ExtA used in NMDecAlt above, we first
define an sPA1+2ck+1 ciphertext creator CrtA (which makes calls to an ex-
tractor oracle) that roughly mimics the queries made by adversary A in
the Hb experiment. We define CrtA as follows:

1. CrtA receives 2ck+ 1 public-keys pk =
(

pk0, {pkb
i }i∈[1...ck],b∈{0,1}

)
from

the sPA1+2ck+1 experiment. CrtA reads its random tape as RA and
runs A0(pk) using tape RA.

2. Whenever CrtA receives a query
(
{yi}i∈[k], α

)
from A0, it returns ⊥

if α = 0k. Otherwise, CrtA submits each (yi, pkαi
i ) to its extractor. If

all of the queries do not decrypt to the same value, CrtA returns ⊥
to A0 as the answer to that query. Call the decrypted value Y(c−1)

and notice that it should be a vector of ciphertexts encrypted under k
public keys in pk. Next CrtA calls m←ExtractAll(pk, α, Y(c−1), c− 1).
CrtA returns m to A0 as the answer to the query. Eventually A0
returns (m0, m1, St) and halts.

3. CrtA accesses its oracle O to generate k blocks of ` random bits

(x1, . . . , xk) and then computes the vector~y =
(

f (pk0
k(c−1)+1, x1), . . . , f (pk0

k(c−1)+k, xk)
)

.

CrtA then runs A1(y∗, St) where y∗ = (~y, 0k) and St is the state in-
formation returned by A0.

4. A1 returns a vector of ciphertexts ~Y and the state information S and
halts. For each query Yj = ({yi}i∈[k], α), CrtA executes steps 1,3,
and 4 of procedure NMDecAlt to decrypt the message. After each
ciphertext in the first parallel query has been decrypted in this way,
CrtA halts.
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The sPA1+` security of E implies there exists an extractor ExtA whose
answers to the decryption queries submitted by CrtA are indistinguishable
from their true decryptions. We have now defined ExtA used in NMDecAlt.
Notice that CrtA does not exactly simulate A’s view in Hb; we will argue
below why ExtA continues to work properly when it is used in Hb.

Claim 2. For b ∈ {0, 1}, {(c)NMEb
∗
(

Π(c),A,D, k, p (k)
)
}k∈N≈c{Hb

(
Π(c),A,D, k, p (k)

)
}k∈N

Proof. Experiments (c)NMEb
∗ and Hb differ only if ExtA answers with an

incorrect decryption in the latter experiment. The assumption on the
sPA1`-security of E implies:

Pr[sPA1+` (Π
∗(c),CrtA,ExtA, k) = 0] ≤ µ1(k) (5)

for some negligible µ1 and therefore ExtA correctly answers all of the
queries issued by CrtA with very high probability (recall that the sPA1
random variable being 0 corresponds to an incorrect decryption event).
As mentioned, CrtA does not exactly mimic A’s view in Hb and so it is not
obvious that ExtA answers correctly in Hb. The two notable differences are
that (i) CrtA uses the weak simulatability of the base encryption scheme
to create the challenge ciphertext instead of using enc to produce the chal-
lenge, and (ii) CrtA does not perform a consistency check that all C′1 = C′j
before decrypting the inner ciphertext but instead uses the extractor on
the outer layer at a position in which α differs from 0k and then uses the
ExtractAll method on the resulting inner ciphertext.

In order to handle the first difference, we analyze Pr[sPA1++
` (Π∗(c),CrtA,ExtA, k) =

0] where sPA1++
` is an experiment identical to sPA1+` with two differences:

1. First, a random bit d is selected and fixed for the remainder of the
game.

2. The oracle O returns random bits as follows: when CrtA accesses the
oracleO for the ith time, instead of r ∈ {0, 1}l ,O returns f−1(pk0

k(c−1)+i, encpk0
k(c−1)+i

(md)).

We argue that ExtA answers all queries correctly in these two games must
be negligibly close by the weak-simulatability property:

Claim 3. |Pr[sPA1+` (Π
∗(c),CrtA,ExtA, k) = 0]−Pr[sPA1++

` (Π∗(c),CrtA,ExtA, k) =
0]| < µ(k).
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Proof. Consider the weak-simulatability adversary B defined as follows:
(Recall that in the first step, the weak-simulatability challenger samples

k pairs of keys (pki, ski) ← gen(1k) for i ∈ [k] and a random bit b.) The
attacker B receives k public keys which we call {pk0

k(c−1)+i}i∈[k] from the
environment. B then samples another k+ 2(c− 1)k+ 1 random keys using
the gen algorithm and fresh random coins to build the public key pk =

{pk0, (pkb
i , skb

i )i∈[ck],b∈{0,1}} (notice that {pk0
k(c−1)+i}i∈[k] in pk are received

from the environment and the rest are generated randomly). B samples
random coins RA for A and runs step (2) of the description of CrtA using
ExtA. Eventually A writes (m0, m1) to its write-only tape. B randomly
chooses d ∈ {0, 1} and stores c′d = NMEnc†(c−1)(pk′, md, 0k) where pk′ =
{pk0, (pkb

i , skb
i )i∈[(c−1)k],b∈{0,1}} (notice that pk′ is the public key for the inner

layer of ciphertexts encrypted under pk for the Π∗(c) encryption scheme
and c′d is the inner layer for an encryption of md under pk). For ease of
notation, we refer to {pk0

k(c−1)+i}i∈[k] as ~pk′′ (these are the public keys for
the outer layer of the challenge ciphertext). Next the challenger samples
ri ∈ {0, 1}l for 1 ≤ i ≤ k and returns

{
yi =

(
ri, f (pk′′i , ri)

)}
i∈[k] if b = 0,

and
{

yi =
(

f (pk′′i , ci = encpk′′i
(c′d)), ci

)}
i∈[k]

if b = 1. B then simulates step

(3) of CrtA by running A1(y∗, St) where y∗ = (~y, 0k) and St is the state
information returned by A0. A1 returns a vector of ciphertexts ~Y and
the state information S and halts. B runs step (4) of CrtA on ~Y. Finally
attacker B outputs b′ = 0 if all the queries made to ExtA so far were
answered correctly and b′ = 1 otherwise. This check can be done by using
the secret keys for the spots in pk that are generated by B (all of them
except {pk0

k(c−1)+i}i∈[k] which is received from the environment) because
after A returns (m0, m1), the only queries that it asks to its extractor are
with respect to ciphertexts encrypted under the mentioned keys in pk.

The case b = 0 corresponds to experiment sPA1+` (Π
∗(c),CrtA,ExtA, k)

and the case b = 1 corresponds to sPA1++
` (Π∗(c),CrtA,ExtA, k). For con-

venience, in the following equations, we abbreviate the two experiments
as sPA1+` and sPA1++

` respectively. It follows that:

Pr[DISTE′(( f , f−1), k,B) = 1] = Pr[b = 0] · Pr[sPA1+` = 0] + Pr[b = 1] · Pr[sPA1++
` = 1]

= (1/2)Pr[sPA1+` = 0] + (1/2)(1− Pr[sPA1++
` = 0])

= 1/2 + 1/2(Pr[sPA1+` = 0]− Pr[sPA1++
` = 0])

Since the weak-simulatability property of E′ implies that |Pr[DISTE′(( f , f−1), k,B) =
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1]− 1/2| ≤ µ(k) for some negligible function µ, it must then follow that

|Pr[sPA1+` = 0]− Pr[sPA1++
` = 0]| ≤ 2µ(k)

which completes the proof of the claim.

Combining (5) with Claim 2 implies that Pr[sPA1++
` = 0] ≤ µ2(k) for

another negligible function µ2. Moreover, by Bayes rule, we can conclude
that there exists another negligible function µ3 such that both Pr[sPA1++

` =
0 | d = 0] ≤ µ3(k) and Pr[sPA1++

` = 0 | d = 1] ≤ µ3(k); i.e., the possibility
for incorrect extraction results remains negligible no matter which of m0
or m1 is used in the sPA1++

` experiment.
In order to handle (ii), we observe that ExtA only receives queries gen-

erated by the first parallel query in both sPA1++
` and experiment Hb. From

the beginning of both experiments and up to the point of the challenge ci-
phertext generation, the initial state st and the distribution of queries fed
to ExtA in Hb is identical to those in experiment sPA1++

` . (This explains
why it is necessary for experiment Hb to make “dummy” calls to ExtA for
every call to dec during the decryption of the CCA1 queries.)

When the ciphertext is generated, since f ( f−1(c)) = c, that challenge
ciphertext in experiments Hb and sPA1++

` conditioned on d = b will also be
identically distributed, and this implies that the parallel query that A1 is-
sues will also be identically distributed. Once this parallel query has been
fixed, the queries that are sent to ExtA are also fixed in both experiments.
By inspection, again because NMDec∗(c)

∗
issues dummy queries to ExtA

during the decryption of the outer layer, it follows that the query distri-
bution will be identical, and the claim follows. Thus, the fact that CrtA
does not perform the same consistency check is irrelevant since the same
distribution of queries is fed to the extractor in both experiments.

It then follows that with high probability, all of the responses from
ExtA in Hb coincide with the true decryption, and therefore (c)NMEb

∗ and
Hb also output the same value which concludes the Claim.

Claim 4. For any ppt adversary A, polynomial p and security parameter k, there
exists an adversary B such that

Hb(Π∗(c),A,D, k, p(k)) ≡ (c− 1)NMEb
∗(Π∗(c−1),B,D, k, p(k))

Proof. We build the (c-1)NME∗ adversary B as follows: B receives the
public-key npk

∗(c−1) = (pk′0, ~pk′ = {pk
′b
i }i∈[(c−1)k],b∈{0,1}) from the envi-

ronment and generates another 2k keys as (pk
′′b
i , sk

′′b
i )← gen(1k) for i ∈ [k]
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and b ∈ {0, 1}. Let pk =
{

pk′0, ~pk′, ~pk
′′
}

. B generates random coins RA and

initializes st←
(
{pki}i∈[2ck+1], RA

)
. B runs A0(pk; RA).

For any CCA1 query Y = (~y, α) that A0 submits, B runs NMDecAlt us-
ing ~sk′′ to decrypt the outer layer. Eventually A0 returns (m0, m1) and the
state information S1 and halts. B then forwards (m0, m1) to the environ-
ment and receives a challenge ciphertext Y′ = (~y′, 0k) from the environ-
ment. B computes {y∗i ← enc(pk′′i ,~y′)}i∈[k] and sets Y∗ = (~y∗, 0k). B also
computes {ri ← f−1(pk′′i , y∗i )}i∈[k] and forwards {ri}i∈[k] to ExtA and runs
A1 on the challenge ciphertext Y∗ and the state information S1. Eventu-
ally A1 returns a vector of queries (the first parallel query) ~Y and the state
information S2 and halts. B submits each Yi to the extractor and receives
a value which we call m′ from it. B then uses ~sk

′′
to check that all the

ciphertexts in the outer layer of Yi decrypts to the same value. If so, it sets
m′ as the decryption of that query otherwise it sets ⊥ as the decryption of
that query. We refer to the resulting vector of decryptions to ~Y as ~d1.

For all q = 2 to c, B runs Aq on Y∗, S2 and ~dq and gets in return a vector
of ciphertexts ~Y and the state information Sq+1. B decrypts Yi = (~y, α) as

follows: the decryption is ⊥ if α = 0k. Otherwise B uses ~sk
′′

to check all
the ciphertexts in the outer layer of Yi decrypts to the same value y0. If
not, the decryption to this query will be ⊥. Otherwise B sets Y′i = (y0, α)

and moves to the next query. After processing all queries, B submits ~Y′

to the environment and gets in return a vector of decryptions to the ~Y′.
Using these answers and the results from the checks, B sets ~di (which is
the vector of the decryption to ~Yi). Eventually B outputs ~dc+1 and the state
information Sc+1 and halts.
B performs a perfect simulation of the Hb(Π∗(c),A,D, k, p(k)) experi-

ment, and thus the claim follows.

Combining Claim 2 and Claim 4 completes the proof of Lemma 3.

3.4 Remarks about the proof

In our construction, we use the k-bit outer-most signature SigVK to pick
the unduplicatable set for each of the c layers of encryption. Not only is
this choice an efficiency improvement in that only one signature key is
needed (instead of c), it is also a critical feature of our proof. This point
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is used in Claim 4. Adversary B must not submit a 0-tag query to its
(c-1)NME challenger; but if each layer could use a different α tag, then A
might select 0 as the tag for the (c− 1) layer and therefore prevent B from
submitting it to its oracle.

4 Conclusions

We have shown both the first construction of a non-malleable CCA1 en-
cryption scheme from a seemingly weaker primitive, and that it is possi-
ble to realize cNM-CCA1 schemes without achieving full CCA2 security.
All of our constructions are black-box, although based on hardness as-
sumptions that are not efficiently falsifiable. Major open questions in the
area are clearly if CPA security implies CCA1 security, CCA1 security im-
plies CCA2, or the transitive closure. Progress on any of these questions,
with either black-box or white-box constructions (or impossibility results),
would be of foundational importance to the field.
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A Instantiating weak-simulatability

Algorithm 1: DEG
G(1k)

1: (p, q, g)← G(1k)
2: x1 ← Zq; X1 ← gx1 mod p
3: x2 ← Zq; X2 ← gx2 mod p
4: Return (pk = (p, q, g, X1, X2),

sk = (p, q, g, x1, x2))

E(pk, M)
1: y← Zq; Y ← gy mod p
2: W ← Xy

1 ; V ← Xy
2 mod p

3: U ← V ·M mod p
4: Return C = (Y, W, U)

D(sk, C)
1: if W 6= Yx1 mod p then Return ⊥
2: Return M← U ·Y−x2 mod p

Algorithm 2: CS-Lite
G(1k)

1: (p, q, g1)← G(1k); g2 ← Gq\{1}
2: x1 ← Zq; x2 ← Zq; z← Zq
3: X ← gx1

1 .gx2
2 mod p; Z ← gz

1 mod p
4: Return (pk = (p, q, g1, g2, X, Z),

sk = (p, q, g1, g2, x1, x2, z))

E(pk, M)
1: r ← Zq
2: R1 ← gr

1 mod p; R2 ← gr
2 mod p

3: E← Zr ·M mod p; V ← Xr mod p
4: Return C = (R1, R2, E, V)

D(sk, C)
1: if V 6= Rx1

1 · R
x2
2 mod p then Return ⊥

2: Return M← E · R−z
1 mod p

Fig. 8: The Encryption Schemes DEG and CS-Lite

Definition 5. (Simulatable Group) [8] A family of groups {Gk}k∈N is simu-
latable if there exist two poly-time functions (h, h−1) and a polynomial `, such
that the following correctness requirements are met.

1. ∀k, ∀r ∈ {0, 1}`(k), h(r) ∈ Gk.

2. h−1 is probabilistic. ∀k, ∀α ∈ Gk, h−1(α) ∈ {0, 1}`(k).
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3. ∀k, h(h−1(α)) = α for all α ∈ Gk.

Similarly, the following two security requirements are met, for all probabilistic
distinguisher A and all k ∈ N, there exists a negligible function ε such that:
Pr[INVA(k, (h, h−1)) = 1] ≤ 1/2 + ε(k) and Pr[INDA{G}(k, h) = 1] ≤ 1/2 +
ε(k), where the experiments are defined in Fig. 9.

INVA(k, (h, h−1))
1: b← {0, 1}
2: b′ ← AOh,h−1,b(1k), where oracle Oh,h−1,b responds to a query

by
sampling r ∈ {0, 1}l(k), and returning r if b = 0 or h−1(h(r)) if

b = 1
3: Output 1 iff b = b′

INDA{G}(k, h)
1: b ∈ {0, 1}
2: b′ ← AOb,h(1k), where Ob,h responds to a query by

sampling r ∈ {0, 1}l(k) and sampling h ∈ Gk and returning h(r) if
b = 0 or h if b = 1

3: Output 1 iff b = b′

Fig. 9: The Experiments INDA and INVA{G} used to define security for

weakly simulatable security of a group family {G}.

Dent showed that groups in which the DDH assumptions are believed
to hold are simulatable.

Lemma 4. [8] For an infinite sequence of pairs of primes q and p, where p =
2q + 1, let G(p,q) be the subgroup of Z∗p of order q, then {G(p,q)} is simulatable
group family.

Theorem 3. The DEG encryption scheme is weakly simulatable if it is instanti-
ated with a simulatable group family {Gk} on which the DDH problem is hard.

Proof. Let (h, h−1) be the efficiently computable functions that exist by the
fact that the {Gk} is a simulatable group family. For ease of notation in
this proof, we assume all functions get the required public parameters (e.g.
the public-key) as part of their input. We need to give the two functions
( f , f−1) for DEG required by the definition of weakly simulatable. De-
fine f (x = (x1, x2, x3)) = (h(x1), h(x2), h(x3)), and f−1(c = (c1, c2, c3)) =
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(h−1(c1), h−1(c2), h−1(c3)). From the properties in the definition of a sim-
ulatable group (family), ( f , f−1) satisfies the corresponding requirements
given in the definition of a weakly simulatable encryption scheme.

We now need to argue the final property of a weakly simulatable en-
cryption scheme: no ppt adversary can distinguish between a valid cipher-
text and one sampled via f (which may not be a valid ciphertext). Namely,
we need to show Pr[DISTDEG(k, ( f , f−1),A) = 1] ≈ 1/2

To meet this goal, we design a series of games (or experiments) to
show the advantage of an adversary being able to distinguish between
legitimate ciphertexts, and sampled outputs of f is negligible. Let Wi,k
be the random variable output of the security experiment in Game i with
security parameter k.

Let Game 1 be exactly the experiment DISTDEG(k, ( f , f−1),A).
Let Game 2 be a modification of Game 1, in which the ciphertext c

produced on Line 3 of DIST returns an encryption of 1, independent of
the value of m.

Claim 5. {W1,k}k ≈c {W2,k}k.

Proof. Follows from CPA security of the DEG encryption scheme.

Let Game 3 be a modification of Game 2 in which again in Line 3 of
DIST, the value W computed in Line 2 of the DEG encryption algorithm
is computed as follows: W ← gr′ , where r′ ∈ Zq (instead of W ← Xy

1).

Claim 6. {W2,k} ≈c {W3,k}

Proof. (sketch) If there is any distinguisher D that can distinguish {W2,k}
from {W3,k} with reasonable probability, then one can use D be used to
build a DDH distinguisher D′. In particular, D′ when given either a tuple
(g, gx1 , gy, gx1y) or (g, gx1 , gy, gr′), can choose a random x2, simulate a pk
for the DEG scheme, and use x2 and the provided information to compute
an appropriate encryption for a perfect simulation of the either Game 2 or
Game 3. We can then simulate D, and use the result to break DDH.

Let Game 4 be a modification of Game 3 where the value U in Line
2 of the DEG encryption algorithm is computed as U = gr′′ for randomly
selected r′′ ∈ Zq.

Claim 7. {W3,k} ≈c {W4,k}
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Proof. (sketch) The proof of this claim parallels that of the previous. If
there is a distinguisher D of {W2,k} and {W3,k} then to can be used to build
a DDH distinguisher D′. In particular, D′ given a tuple (g, gx2 , gy, gx2y) or
(g, gx2 , gy, gr′), it choose a random x1, simulates a pk for the DEG scheme,
and use x1 and the provided information to provide an appropriate en-
cryption, for a perfect simulation of the either Game 3 or Game 4.

In Game 4 each of the components of the ciphertext in Line 3 of DIST
is now random group element. In Game 5 we replace these random group
elements with random output from the group element sampling algorithm
h, which due to the simulatable group properties are indistinguishable
from random group elements. Specifically, in Game 5 in Line 5 of DIST we
return the “ciphertext” (Y = h(r1), W = h(r2), U = h(r3)), for randomly
chosen r1, r2, r3 ∈ {0, 1}l(k).

Claim 8. Pr{W4,k} ≈c {W5,k}

Proof. Follows immediately from simulatable group properties of G and
h.

We note that by the definition of f , the output of the encryption al-
gorithm in Game 5 Line 5 of DIST is an identically, but independently
distributed random variable as the one output on Line 4 of DIST (i.e.,
f (r1, r2, r3) for randomly chosen r1, r2, r3). It is clear that Pr[Wk,5 = 1] =
1/2.

Therefore, since we can combine all the claims to show that Pr[Wk,1 =
1] ≈c Pr[Wk,5 = 1] = 1/2 we conclude that DEG is weakly simulatable.

Theorem 4. The Cramer-Shoup lite encryption scheme is weakly simulatable if
it is instantiated on a simulatable group G on which the DDH problem is hard.

Proof. Similar to the proof of Theorem 3.

B Instantiating SPA secure schemes

Definition 6 (DHK` Assumption (modification of [1])). Let G be a prime-
order-group generator. Let CrtG be an algorithm that has access to an oracle,
takes an ` sequence of two primes and two group elements, and returns nothing.
Let ExtG be an algorithm that takes a pair of group elements and some state
information, and returns an exponent and a new state. We call CrtG a DHK`-
adversary and ExtG a DHK`-extractor.
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DHK`(G,CrtG,ExtG, k)
1: (pi, qi, gi ← G(1k); ai ← Zqi ; Ai ← gai

i mod pi)i∈`(k)
2: Let R[CrtG] and R[ExtG] be randomly selected strings for CrtG and

ExtG
3: st← ((pi, qi, gi, Ai)i∈[`(k)], R[CrtG])

4: while Simulate CrtG((pi, qi, gi, Ai)i∈[`(k)]; R[CrtG]) do
5: if CrtG queries (i, B, W) then
6: (b, st)← ExtG((i, B, W), st; R[ExtG])
7: if W ≡ Bai mod pi and B 6≡ gb

i mod pi then Return 1

8: else Return b to CrtG
9: Return 0

Fig. 10: DHK`: An Extension to the DHK Definition

We say that G satisfies the DHK` assumption if for every polynomial-time
CrtG there exists a polynomial-time ExtG and negligible function µ, s.t. for all
k ∈N: Pr[DHK`(G,CrtG,ExtG, k) = 1] ≤ µ(k).

Our modification to DHK` versus the definition in [1] requires that the
ciphertext creator be able to generate ciphertexts relative to a polynomial
number of randomly chosen public-keys. It seems reasonable to conjecture
that any extractor that could extract exponents with respect to single value
A = ga, could do so efficiently for many Ai. We now argue that DEG is
sPA1` secure under the DHK` assumption.

Theorem 5. For any polynomial `, if the DHK` assumption holds and the DEG
scheme is instantiated with a simulatable group family {Gk}, then the DEG
scheme is sPA1` secure.

Proof. We need to show that for any adversary Crt there exists an ex-
tractor Ext that can decrypt its queries flawlessly. Ext receives (pki =
〈pi, qi, gi, Ai, Âi〉)i∈`(k) and R[Crt] as state information. Then Ext builds
the DHK` adversary CrtG that runs the sPA1` adversary Crt internally and
simulates the sPA1` experiment for it. CrtG receives (pi, qi, gi, Ai)i∈`(k) and
its random coins from Ext and parses its random coins as ( f−1

G (Âi))i∈[`(k)] | R[Crt]
(prepared by Ext where Âi is a random group element in G). Notice that
since G, the group from which Âi is sampled from, is simulatable, it fol-
lows that f−1

G (Âi) is indistinguishable from random bits and should have
indistinguishable effect on the output of the extraction. Because CrtG is
a DHK` adversary, therefore there exists an extractor for it ExtG. For
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each i ∈ [`(k)], CrtG sets pki ← (pi, qi, gi, Ai, Âi). CrtG then runs Crt on
(pki)i∈[`(k)] and the random coins R[Crt] until Crt halts, answering Crt’s
queries as follows: upon receiving the query C = (i, Y, W, U) from Crt,
CrtG submits (i, Y, W) to the DHK` extractor ExtG. The DHK` extrac-
tor ExtG returns the value b. If Y 6≡ gb

i mod pi or W 6≡ Ab
i mod pi

then CrtG returns ⊥ as the answer to this query, otherwise CrtG com-
putes M ← U · (Âi

b
)−1 mod pi and return the result to Crt. Notice that

since CrtG is a DHK` adversary, the extractor ExtG should return the right
answer to the queries CrtG submits. Since Ext makes a mistake in an-
swering Crt’s queries only when there is a mistake in ExtG’s answers to
CrtG’s queries, we conclude that Ext also returns the right decryption to
the queries submitted by Crt and is an extractor for it.

Theorem 6. For any polynomial `, The CS-Lite scheme is sPA1` secure if the
followings hold: i) the DHK` assumption, and ii) CS-Lite is instantiated with a
simulatable group family {Gk}.

Proof. Similar to the proof of Theorem 5.
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